ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of $gamma$-ray production via neutron-$^{16}$O reaction using a 77 MeV quasi-monoenergetic neutron beam

60   0   0.0 ( 0 )
 نشر من قبل Yosuke Ashida
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding of $gamma$-ray production via neutron interactions on oxygen is essential for the study of neutrino neutral-current quasielastic interactions in water Cherenkov detectors. A measurement of $gamma$-ray production from such reactions was performed using a 77~MeV quasi-monoenergetic neutron beam. Several $gamma$-ray peaks, which are expected to come from neutron-${rm ^{16}O}$ reactions, are observed and production cross sections are measured for nine $gamma$-ray components of energies between 2 and 8~MeV. These are the first measurements at this neutron energy using a nearly monoenergitic beam.



قيم البحث

اقرأ أيضاً

We have measured double-differential cross sections in the interaction of 175 MeV quasimonoenergetic neutrons with O, Si, Fe and Bi. We have compared these results with model calculations with INCL4.5-Abla07, MCNP6 and TALYS-1.2. We have also compare d our data with PHITS calculations, where the pre-equilibrium stage of the reaction was accounted respectively using the JENDL/HE-2007 evaluated data library, the quantum molecular dynamics model (QMD) and a modified version of QMD (MQMD) to include a surface coalescence model. The most crucial aspect is the formation and emission of composite particles in the pre-equilibrium stage.
116 - Wanchun Wei 2020
The puzzle remains in the large discrepancy between neutron lifetime measured by the two distinct experimental approaches -- counts of beta decays in a neutron beam and storage of ultracold neutrons in a potential trap, namely, the beam method versus the bottle method. In this paper, we propose a new experiment to measure the neutron lifetime in a cold neutron beam with a sensitivity goal of 0.1% or sub-1 second. The neutron beta decays will be counted in a superfluid helium-4 scintillation detector at 0.5 K, and the neutron flux will be simultaneously monitored by the helium-3 captures in the same volume. The cold neutron beam must be of wavelength $lambda>16.5$ A to eliminate scattering with superfluid helium. A new precise measurement of neutron lifetime with the beam method of unique inherent systematic effects will greatly advance in resolving the puzzle.
The one neutron knock-out reaction $^1$H($^{20}$C,$^{19}$C$gamma$) was studied at RIKEN using the DALI2 array. A $gamma$ ray transition was observed at 198(10) keV. Based on the comparison between the experimental production cross section and theoret ical predictions, the transition was assigned to the decay of the 3/2$_1^+$ state to the ground state.
The results of measurements performed using UCN storing method are in good agreement. The latest most accurate measurements of the neutron decay asymmetry and neutron lifetime measurements by storage method are in agreement within the Standard Model. However, there is a significant discrepancy at $3.6sigma$ (1% of decay probability) level with beam method experiment. This article discusses the possible causes of discrepancy in the measurements of the neutron lifetime with beam method experiment. The most probable cause, apparently, is the loss of protons in beam method experiment during storage in a magnetic trap due to charge exchange collisions of protons with the residual gas. The proton becomes neutral and leaves the trap, which leads to a decrease in the number of registered protons, i.e. to a decrease in the probability of neutron decay or to an increase in the measured neutron lifetime.
Background: Recently, a systematic exploration of two-neutron transfer induced by the ($^{18}$O, $^{16}$O) reaction on different targets has been performed. The high resolution data have been collected at the MAGNEX magnetic spectrometer of the INFN- LNS laboratory in Catania and analyzed with the coupled reaction channel (CRC) approach. The simultaneous and sequential transfers of the two neutrons have been considered under the same theoretical framework without the need of adjustable factors in the calculations. Purpose: A detailed analysis of the one-neutron transfer cross sections is important to study the sequential two-neutron transfer. Here, we examine the ($^{18}$O, $^{17}$O) reaction on $^{16}$O, $^{28}$Si and $^{64}$Ni targets. These even-even nuclei allow for investigation of one-neutron transfer in distinct nuclear shell spaces. Method: The MAGNEX spectrometer was used to measure mass spectra of ejectiles and extract differential cross sections of one-neutron transfer to low-lying states. We adopted the same CRC formalism used in the sequential two-neutron transfer, including relevant channels and using spectroscopic amplitudes obtained from shell model calculations. We also compare with one-step distorted wave Born approximation (DWBA). Results: For the $^{18}$O + $^{16}$O and the $^{18}$O + $^{28}$O systems we used two interactions in the shell model. The experimental angular distributions are reasonably well reproduced by the CRC calculations. In the $^{18}$O + $^{64}$Ni system, we considered only one interaction and the theoretical curve describes the shape and order of magnitude observed in the experimental data. Conclusions: Comparisons between experimental, DWBA and CRC angle-integrated cross sections suggest that excitations before or after the transfer of neutron is relevant in the $^{18}$O + $^{16}$O and $^{18}$O + $^{64}$Ni systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا