ﻻ يوجد ملخص باللغة العربية
SrTi0.5Mn0.5O3 (STMO) is a chemically disordered perovskite having random distribution of Ti and Mn over 1b site. Striking discrepancies about the structural and magnetic properties of STMO demands detailed analysis which is addressed. To explore the magnetic ground state of STMO, static and dynamic magnetic properties were studied over a broad temperature range (2-300 K). The dc, ac magnetization show a cusp like peak at Tf ~ 14 K, which exhibits field and frequency dependence. The thermoremanent magnetization is characterized by using stretched exponential function and characteristic time suggests the existence of spin clusters. Also the other features observed in magnetic memory effect, muon spin resonance/rotation and neutron powder diffraction confirm the existence of cluster spin glass state in STMO, rather than the long range ordered ground state. Intriguingly, the observed spin relaxation can be attributed to the dilute magnetism due to non-magnetic doping at Mn-site and competing antiferromagnetic and ferromagnetic interactions resulting from the site disorder.
We report the comprehensive experimental results identifying the magnetic spin ordering and the magnetization dynamics of a double perovskite Pr2CoFeO6 by employing the (dc and ac) magnetization, powder neutron diffraction (NPD) and X-ray magnetic ci
Famous for its spin-state puzzle, LaSrCoO$_4$ (Co$^{3+}$) is an intermediate between antiferromagnetic (AFM) La$_2$CoO$_4$ (Co$^{2+}$) and ferromagnetic (FM) Sr$_2$CoO$_4$ (Co$^{4+}$). The appearance of the Co$^{3+}$ valence state (not present in the
The study of the ferrites YBaFe4-xGaxO7 shows that the substitution of Ga for Fe in YBaFe4O7 stabilizes the hexagonal symmetry for 0.40 < x < 0.70, at the expense of the cubic one. Using combined measurements of a. c. and d. c. magnetization, we esta
Birnessite compounds are stable across a wide range of compositions that produces a remarkable diversity in their physical, electrochemical and functional properties. These are hydrated analogues of the magnetically frustrated, mixed-valent manganese
In conventional exchange-bias system comprising of a bilayer film of ferromagnet (FM) and antiferromagnet (AFM), investigating the role of spin-disorder and spin-frustration inside the AFM and at the interface has been crucial in understanding the fu