ﻻ يوجد ملخص باللغة العربية
The study of the ferrites YBaFe4-xGaxO7 shows that the substitution of Ga for Fe in YBaFe4O7 stabilizes the hexagonal symmetry for 0.40 < x < 0.70, at the expense of the cubic one. Using combined measurements of a. c. and d. c. magnetization, we establish that Ga substitution for Fe in YBaFe4O7 leads to an evolution from a geometrically frustrated spin glass (for x = 0) to a cationic disorder induced spin glass (x = 0.70). We also find an intermediate narrow range of doping where the samples are clearly phase separated having small ferrimagnetic clusters embedded in a spin glass matrix. The origin of the ferrimagnetic clusters lies in the change in symmetry of the samples from cubic to hexagonal (and a consequent lifting of the geometrical frustration) as a result of Ga doping. We also show the presence of exchange bias and domain wall pinning in these samples. The cause of both these effects can be traced back to the inherent phase separation present in the samples.
SrTi0.5Mn0.5O3 (STMO) is a chemically disordered perovskite having random distribution of Ti and Mn over 1b site. Striking discrepancies about the structural and magnetic properties of STMO demands detailed analysis which is addressed. To explore the
A range of ferroic glasses, magnetic, polar, relaxor and strain glasses, are considered together from the perspective of spin glasses. Simple mathematical modelling is shown to provide a possible conceptual unification to back similarities of experim
We report inelastic neutron scattering results that reveal an hour-glass magnetic excitation spectrum in La1.75Sr0.25CoO4. The magnetic spectrum is similar to that observed previously in La1.67Sr0.33CoO4, but the spectral features are broader. We sho
The physics of disordered alloys, such as typically the well known case of CeNi1-xCux alloys, showing an interplay among the Kondo effect, the spin glass state and a magnetic order, has been studied firstly within an average description like in the S
The substitution of zinc for iron in YBaFe4O7 has allowed the oxide series YBaFe4-xZnxO7, with 0.40 < x < 1.50, belonging to the 114 structural family to be synthesized. These oxides crystallize in the hexagonal symmetry (P63mc), as opposed to the cu