We study edge asymptotics of poissonized Plancherel-type measures on skew Young diagrams (integer partitions). These measures can be seen as generalizations of those studied by Baik--Deift--Johansson and Baik--Rains in resolving Ulams problem on longest increasing subsequences of random permutations and the last passage percolation (corner growth) discre
Given a random word of size $n$ whose letters are drawn independently from an ordered alphabet of size $m$, the fluctuations of the shape of the random RSK Young tableaux are investigated, when $n$ and $m$ converge together to infinity. If $m$ does n
ot grow too fast and if the draws are uniform, then the limiting shape is the same as the limiting spectrum of the GUE. In the non-uniform case, a control of both highest probabilities will ensure the convergence of the first row of the tableau toward the Tracy--Widom distribution.
Plane partitions have been widely studied in Mathematics since MacMahon. See, for example, the works by Andrews, Macdonald, Stanley, Sagan and Krattenthaler. The Schur process approach, introduced by Okounkov and Reshetikhin, and further developed by
Borodin, Corwin, Corteel, Savelief and Vuletic, has been proved to be a powerful tool in the study of various kinds of plane partitions. The exact enumerations of ordinary plane partitions, shifted plane partitions and cylindric partitions could be derived from two summation formulas for Schur processes, namely, the open summation formula and the cylindric summation formula. In this paper, we establish a new summation formula for Schur processes, called the complete summation formula. As an application, we obtain the generating function and the asymptotic formula for the number of doubled shifted plane partitions, which can be viewed as plane partitions `shifted at the two sides. We prove that the order of the asymptotic formula depends only on the diagonal width of the doubled shifted plane partition, not on the profile (the skew zone) itself. By using the same methods, the generating function and the asymptotic formula for the number of symmetric cylindric partitions are also derived.
We provide a non-recursive, combinatorial classification of multiplicity-free skew Schur polynomials. These polynomials are $GL_n$, and $SL_n$, characters of the skew Schur modules. Our result extends work of H. Thomas--A. Yong, and C. Gutschwager, i
n which they classify the multiplicity-free skew Schur functions.
In this paper we enumerate $k$-noncrossing tangled-diagrams. A tangled-diagram is a labeled graph whose vertices are $1,...,n$ have degree $le 2$, and are arranged in increasing order in a horizontal line. Its arcs are drawn in the upper halfplane wi
th a particular notion of crossings and nestings. Our main result is the asymptotic formula for the number of $k$-noncrossing tangled-diagrams $T_{k}(n) sim c_k n^{-((k-1)^2+(k-1)/2)} (4(k-1)^2+2(k-1)+1)^n$ for some $c_k>0$.
Let $mathcal{T}_3$ be the three-rowed strip. Recently Regev conjectured that the number of standard Young tableaux with $n-3$ entries in the skew three-rowed strip $mathcal{T}_3 / (2,1,0)$ is $m_{n-1}-m_{n-3}$, a difference of two Motzkin numbers. Th
is conjecture, together with hundreds of similar identities, were derived automatically and proved rigorously by Zeilberger via his powerful program and WZ method. It appears that each one is a linear combination of Motzkin numbers with constant coefficients. In this paper we will introduce a simple bijection between Motzkin paths and standard Young tableaux with at most three rows. With this bijection we answer Zeilbergers question affirmatively that there is a uniform way to construct bijective proofs for all of those identites.