ﻻ يوجد ملخص باللغة العربية
Given a random word of size $n$ whose letters are drawn independently from an ordered alphabet of size $m$, the fluctuations of the shape of the random RSK Young tableaux are investigated, when $n$ and $m$ converge together to infinity. If $m$ does not grow too fast and if the draws are uniform, then the limiting shape is the same as the limiting spectrum of the GUE. In the non-uniform case, a control of both highest probabilities will ensure the convergence of the first row of the tableau toward the Tracy--Widom distribution.
In this paper we study the metastable behavior of one of the simplest disordered spin system, the random field Curie-Weiss model. We will show how the potential theoretic approach can be used to prove sharp estimates on capacities and metastable exit
We study edge asymptotics of poissonized Plancherel-type measures on skew Young diagrams (integer partitions). These measures can be seen as generalizations of those studied by Baik--Deift--Johansson and Baik--Rains in resolving Ulams problem on long
For critical bond-percolation on high-dimensional torus, this paper proves sharp lower bounds on the size of the largest cluster, removing a logarithmic correction in the lower bound in Heydenreich and van der Hofstad (2007). This improvement finally
We give overcrowding estimates for the Sine_beta process, the bulk point process limit of the Gaussian beta-ensemble. We show that the probability of having at least n points in a fixed interval is given by $e^{-frac{beta}{2} n^2 log(n)+O(n^2)}$ as $
In this article we consider transient random walks on HNN extensions of finitely generated groups. We prove that the rate of escape w.r.t. some generalised word length exists. Moreover, a central limit theorem with respect to the generalised word len