ترغب بنشر مسار تعليمي؟ اضغط هنا

GANSynth: Adversarial Neural Audio Synthesis

100   0   0.0 ( 0 )
 نشر من قبل Jesse Engel
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Efficient audio synthesis is an inherently difficult machine learning task, as human perception is sensitive to both global structure and fine-scale waveform coherence. Autoregressive models, such as WaveNet, model local structure at the expense of global latent structure and slow iterative sampling, while Generative Adversarial Networks (GANs), have global latent conditioning and efficient parallel sampling, but struggle to generate locally-coherent audio waveforms. Herein, we demonstrate that GANs can in fact generate high-fidelity and locally-coherent audio by modeling log magnitudes and instantaneous frequencies with sufficient frequency resolution in the spectral domain. Through extensive empirical investigations on the NSynth dataset, we demonstrate that GANs are able to outperform strong WaveNet baselines on automated and human evaluation metrics, and efficiently generate audio several orders of magnitude faster than their autoregressive counterparts.

قيم البحث

اقرأ أيضاً

Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to both estimating the data distribution and generating high-quality samples. Efficient sampling for this class of models has however remained an elu sive problem. With a focus on text-to-speech synthesis, we describe a set of general techniques for reducing sampling time while maintaining high output quality. We first describe a single-layer recurrent neural network, the WaveRNN, with a dual softmax layer that matches the quality of the state-of-the-art WaveNet model. The compact form of the network makes it possible to generate 24kHz 16-bit audio 4x faster than real time on a GPU. Second, we apply a weight pruning technique to reduce the number of weights in the WaveRNN. We find that, for a constant number of parameters, large sparse networks perform better than small dense networks and this relationship holds for sparsity levels beyond 96%. The small number of weights in a Sparse WaveRNN makes it possible to sample high-fidelity audio on a mobile CPU in real time. Finally, we propose a new generation scheme based on subscaling that folds a long sequence into a batch of shorter sequences and allows one to generate multiple samples at once. The Subscale WaveRNN produces 16 samples per step without loss of quality and offers an orthogonal method for increasing sampling efficiency.
A number of recent advances in neural audio synthesis rely on upsampling layers, which can introduce undesired artifacts. In computer vision, upsampling artifacts have been studied and are known as checkerboard artifacts (due to their characteristic visual pattern). However, their effect has been overlooked so far in audio processing. Here, we address this gap by studying this problem from the audio signal processing perspective. We first show that the main sources of upsampling artifacts are: (i) the tonal and filtering artifacts introduced by problematic upsampling operators, and (ii) the spectral replicas that emerge while upsampling. We then compare different upsampling layers, showing that nearest neighbor upsamplers can be an alternative to the problematic (but state-of-the-art) transposed and subpixel convolutions which are prone to introduce tonal artifacts.
We present the Neural Waveshaping Unit (NEWT): a novel, lightweight, fully causal approach to neural audio synthesis which operates directly in the waveform domain, with an accompanying optimisation (FastNEWT) for efficient CPU inference. The NEWT us es time-distributed multilayer perceptrons with periodic activations to implicitly learn nonlinear transfer functions that encode the characteristics of a target timbre. Once trained, a NEWT can produce complex timbral evolutions by simple affine transformations of its input and output signals. We paired the NEWT with a differentiable noise synthesiser and reverb and found it capable of generating realistic musical instrument performances with only 260k total model parameters, conditioned on F0 and loudness features. We compared our method to state-of-the-art benchmarks with a multi-stimulus listening test and the Frechet Audio Distance and found it performed competitively across the tested timbral domains. Our method significantly outperformed the benchmarks in terms of generation speed, and achieved real-time performance on a consumer CPU, both with and without FastNEWT, suggesting it is a viable basis for future creative sound design tools.
Generative adversarial networks have seen rapid development in recent years and have led to remarkable improvements in generative modelling of images. However, their application in the audio domain has received limited attention, and autoregressive m odels, such as WaveNet, remain the state of the art in generative modelling of audio signals such as human speech. To address this paucity, we introduce GAN-TTS, a Generative Adversarial Network for Text-to-Speech. Our architecture is composed of a conditional feed-forward generator producing raw speech audio, and an ensemble of discriminators which operate on random windows of different sizes. The discriminators analyse the audio both in terms of general realism, as well as how well the audio corresponds to the utterance that should be pronounced. To measure the performance of GAN-TTS, we employ both subjective human evaluation (MOS - Mean Opinion Score), as well as novel quantitative metrics (Frechet DeepSpeech Distance and Kernel DeepSpeech Distance), which we find to be well correlated with MOS. We show that GAN-TTS is capable of generating high-fidelity speech with naturalness comparable to the state-of-the-art models, and unlike autoregressive models, it is highly parallelisable thanks to an efficient feed-forward generator. Listen to GAN-TTS reading this abstract at https://storage.googleapis.com/deepmind-media/research/abstract.wav.
A method for statistical parametric speech synthesis incorporating generative adversarial networks (GANs) is proposed. Although powerful deep neural networks (DNNs) techniques can be applied to artificially synthesize speech waveform, the synthetic s peech quality is low compared with that of natural speech. One of the issues causing the quality degradation is an over-smoothing effect often observed in the generated speech parameters. A GAN introduced in this paper consists of two neural networks: a discriminator to distinguish natural and generated samples, and a generator to deceive the discriminator. In the proposed framework incorporating the GANs, the discriminator is trained to distinguish natural and generated speech parameters, while the acoustic models are trained to minimize the weighted sum of the conventional minimum generation loss and an adversarial loss for deceiving the discriminator. Since the objective of the GANs is to minimize the divergence (i.e., distribution difference) between the natural and generated speech parameters, the proposed method effectively alleviates the over-smoothing effect on the generated speech parameters. We evaluated the effectiveness for text-to-speech and voice conversion, and found that the proposed method can generate more natural spectral parameters and $F_0$ than conventional minimum generation error training algorithm regardless its hyper-parameter settings. Furthermore, we investigated the effect of the divergence of various GANs, and found that a Wasserstein GAN minimizing the Earth-Movers distance works the best in terms of improving synthetic speech quality.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا