ﻻ يوجد ملخص باللغة العربية
Due to the vast growth of the many-body level density with excitation energy, its smoothed form is of central relevance for spectral and thermodynamic properties of interacting quantum systems. We compute the cumulative of this level density for confined one-dimensional continuous systems with repulsive short-range interactions. We show that the crossover from an ideal Bose gas to the strongly correlated, fermionized gas, i.e., partial fermionization, exhibits universal behavior: Systems with very few up to many particles share the same underlying spectral features. In our derivation we supplement quantum cluster expansions with short-time dynamical information. Our nonperturbative analytical results are in excellent agreement with numerics for systems of experimental relevance in cold atom physics, such as interacting bosons on a ring (Lieb-Liniger model) or subject to harmonic confinement. Our method provides predictions for excitation spectra that enable access to finite-temperature thermodynamics in large parameter ranges.
Building on the recent experimental achievements obtained with scanning electron microscopy on ultracold atoms, we study one-dimensional Bose gases in the crossover between the weakly (quasi-condensate) and the strongly interacting (Tonks-Girardeau)
The dynamics of strongly interacting many-body quantum systems are notoriously complex and difficult to simulate. A new theory, generalized hydrodynamics (GHD), promises to efficiently accomplish such simulations for nearly-integrable systems. It pre
Dynamical fermionization refers to the phenomenon in Tonks-Girardeau (TG) gases where, upon release from harmonic confinement, the gass momentum density profile evolves asymptotically to that of an ideal Fermi gas in the initial trap. This phenomenon
The collective behavior of a many-body system near a continuous phase transition is insensitive to the details of its microscopic physics[1]. Characteristic features near the phase transition are that the thermodynamic observables follow generalized
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different in