ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Neural Network Inversion via Auxiliary Knowledge Alignment

297   0   0.0 ( 0 )
 نشر من قبل Ziqi Yang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The rise of deep learning technique has raised new privacy concerns about the training data and test data. In this work, we investigate the model inversion problem in the adversarial settings, where the adversary aims at inferring information about the target models training data and test data from the models prediction values. We develop a solution to train a second neural network that acts as the inverse of the target model to perform the inversion. The inversion model can be trained with black-box accesses to the target model. We propose two main techniques towards training the inversion model in the adversarial settings. First, we leverage the adversarys background knowledge to compose an auxiliary set to train the inversion model, which does not require access to the original training data. Second, we design a truncation-based technique to align the inversion model to enable effective inversion of the target model from partial predictions that the adversary obtains on victim users data. We systematically evaluate our inversion approach in various machine learning tasks and model architectures on multiple image datasets. Our experimental results show that even with no full knowledge about the target models training data, and with only partial prediction values, our inversion approach is still able to perform accurate inversion of the target model, and outperform previous approaches.



قيم البحث

اقرأ أيضاً

In this work, we show how to jointly exploit adversarial perturbation and model poisoning vulnerabilities to practically launch a new stealthy attack, dubbed AdvTrojan. AdvTrojan is stealthy because it can be activated only when: 1) a carefully craft ed adversarial perturbation is injected into the input examples during inference, and 2) a Trojan backdoor is implanted during the training process of the model. We leverage adversarial noise in the input space to move Trojan-infected examples across the model decision boundary, making it difficult to detect. The stealthiness behavior of AdvTrojan fools the users into accidentally trust the infected model as a robust classifier against adversarial examples. AdvTrojan can be implemented by only poisoning the training data similar to conventional Trojan backdoor attacks. Our thorough analysis and extensive experiments on several benchmark datasets show that AdvTrojan can bypass existing defenses with a success rate close to 100% in most of our experimental scenarios and can be extended to attack federated learning tasks as well.
The state of the art performance of deep learning models comes at a high cost for companies and institutions, due to the tedious data collection and the heavy processing requirements. Recently, [35, 22] proposed to watermark convolutional neural netw orks for image classification, by embedding information into their weights. While this is a clear progress towards model protection, this technique solely allows for extracting the watermark from a network that one accesses locally and entirely. Instead, we aim at allowing the extraction of the watermark from a neural network (or any other machine learning model) that is operated remotely, and available through a service API. To this end, we propose to mark the models action itself, tweaking slightly its decision frontiers so that a set of specific queries convey the desired information. In the present paper, we formally introduce the problem and propose a novel zero-bit watermarking algorithm that makes use of adversarial model examples. While limiting the loss of performance of the protected model, this algorithm allows subsequent extraction of the watermark using only few queries. We experimented the approach on three neural networks designed for image classification, in the context of MNIST digit recognition task.
Network alignment is a critical task to a wide variety of fields. Many existing works leverage on representation learning to accomplish this task without eliminating domain representation bias induced by domain-dependent features, which yield inferio r alignment performance. This paper proposes a unified deep architecture (DANA) to obtain a domain-invariant representation for network alignment via an adversarial domain classifier. Specifically, we employ the graph convolutional networks to perform network embedding under the domain adversarial principle, given a small set of observed anchors. Then, the semi-supervised learning framework is optimized by maximizing a posterior probability distribution of observed anchors and the loss of a domain classifier simultaneously. We also develop a few variants of our model, such as, direction-aware network alignment, weight-sharing for directed networks and simplification of parameter space. Experiments on three real-world social network datasets demonstrate that our proposed approaches achieve state-of-the-art alignment results.
227 - Ziqi Yang , Bin Shao , Bohan Xuan 2020
Neural networks are susceptible to data inference attacks such as the model inversion attack and the membership inference attack, where the attacker could infer the reconstruction and the membership of a data sample from the confidence scores predict ed by the target classifier. In this paper, we propose a unified approach, namely purification framework, to defend data inference attacks. It purifies the confidence score vectors predicted by the target classifier by reducing their dispersion. The purifier can be further specialized in defending a particular attack via adversarial learning. We evaluate our approach on benchmark datasets and classifiers. We show that when the purifier is dedicated to one attack, it naturally defends the other one, which empirically demonstrates the connection between the two attacks. The purifier can effectively defend both attacks. For example, it can reduce the membership inference accuracy by up to 15% and increase the model inversion error by a factor of up to 4. Besides, it incurs less than 0.4% classification accuracy drop and less than 5.5% distortion to the confidence scores.
This paper studies defense mechanisms against model inversion (MI) attacks -- a type of privacy attacks aimed at inferring information about the training data distribution given the access to a target machine learning model. Existing defense mechanis ms rely on model-specific heuristics or noise injection. While being able to mitigate attacks, existing methods significantly hinder model performance. There remains a question of how to design a defense mechanism that is applicable to a variety of models and achieves better utility-privacy tradeoff. In this paper, we propose the Mutual Information Regularization based Defense (MID) against MI attacks. The key idea is to limit the information about the model input contained in the prediction, thereby limiting the ability of an adversary to infer the private training attributes from the model prediction. Our defense principle is model-agnostic and we present tractable approximations to the regularizer for linear regression, decision trees, and neural networks, which have been successfully attacked by prior work if not attached with any defenses. We present a formal study of MI attacks by devising a rigorous game-based definition and quantifying the associated information leakage. Our theoretical analysis sheds light on the inefficacy of DP in defending against MI attacks, which has been empirically observed in several prior works. Our experiments demonstrate that MID leads to state-of-the-art performance for a variety of MI attacks, target models and datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا