ﻻ يوجد ملخص باللغة العربية
Recently, we have argued that experimental data on superfluid density and terahertz conductivity of overdoped LSCO are compatible with a Landau Fermi liquid/Bardeen-Cooper-Schrieffer description of these samples, provided dopants are treated within dirty $d$-wave theory as weak scatterers. Here we test these ideas by comparing to specific heat and thermal conductivity data on LSCO, showing that the theory works extremely well across the overdoped region for similar disorder parameters. We then study the same properties in another overdoped cuprate, Tl-2201, thought to be quite clean since it exhibits quantum oscillations, low residual resistivities and small superconducting state Sommerfeld coefficients. Our results are consistent with the Tl-2201 system being $approx 3$ times cleaner due in part to the dopant atoms being located further from the CuO$_2$ plane. We conclude that cuprates can be described semiquantitatively in the overdoped regime by dirty $d$-wave theory, subject to significant Fermi liquid renormalizations, without introducing physics beyond the Landau-BCS paradigm.
We present a theoretical framework for understanding the behavior of the normal and superconducting states of overdoped cuprate high temperature superconductors in the vicinity of the doping-tuned quantum superconductor-to-metal transition. The key i
The thermoelectric power S(T) of single-layer Bi2Sr2CuO6+d is studied as a function of oxygen doping in the strongly overdoped region of the phase diagram (T, d). As other physical properties in this region, diffusion thermopower Sdiff(T) also shows
We present a soft x-ray angle-resolved photoemission spectroscopy study of the overdoped high-temperature superconductors La$_{2-x}$Sr$_x$CuO$_4$ and La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_4$. In-plane and out-of-plane components of the Fermi surface are m
Overdoped high-temperature cuprate superconductors have been widely believed to be described by the physics of d-wave BCS-like superconductivity. However, recent measurements indicate that as the doping is increased, the superfluid density decreases
To elucidate the superconductor to metal transition at the end of superconducting dome, the overdoped regime has stepped onto the center stage of cuprate research recently. Here, we use scanning tunneling microscopy to investigate the atomic-scale el