ﻻ يوجد ملخص باللغة العربية
Overdoped high-temperature cuprate superconductors have been widely believed to be described by the physics of d-wave BCS-like superconductivity. However, recent measurements indicate that as the doping is increased, the superfluid density decreases smoothly to zero rather than increasing as expected by BCS theory in the absence of disorder. Here, we combine time-domain THz spectroscopy with kHz range mutual inductance measurements on the same overdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$ films to determine both the superfluid and the uncondensed carrier density as a function of doping. A significant fraction of the carriers remains uncondensed in a wide Drude-like peak even as $Trightarrow0$, which, when taken with the linear-in-temperature superfluid density, is inconsistent with existing theories for the role of disorder in suppressing the superfluid density in a d-wave superconductor. Our almost eight orders of magnitude in measurement frequency range gives us a unique look at the low frequency spectral weight distribution, which may suggest the presence of quantum phase fluctuations as the critical doping is approached.
The thermoelectric power S(T) of single-layer Bi2Sr2CuO6+d is studied as a function of oxygen doping in the strongly overdoped region of the phase diagram (T, d). As other physical properties in this region, diffusion thermopower Sdiff(T) also shows
We present a theoretical framework for understanding the behavior of the normal and superconducting states of overdoped cuprate high temperature superconductors in the vicinity of the doping-tuned quantum superconductor-to-metal transition. The key i
The nature of the superconducting (SC) precursor in the cuprates has been the subject of intense interest, with profound implications for both the normal and the SC states. Different experimental probes have led to vastly disparate conclusions on the
We present a soft x-ray angle-resolved photoemission spectroscopy study of the overdoped high-temperature superconductors La$_{2-x}$Sr$_x$CuO$_4$ and La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_4$. In-plane and out-of-plane components of the Fermi surface are m
To elucidate the superconductor to metal transition at the end of superconducting dome, the overdoped regime has stepped onto the center stage of cuprate research recently. Here, we use scanning tunneling microscopy to investigate the atomic-scale el