ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimizing Sparse RFI Prediction using Deep Learning

85   0   0.0 ( 0 )
 نشر من قبل Joshua Kerrigan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio Frequency Interference (RFI) is an ever-present limiting factor among radio telescopes even in the most remote observing locations. When looking to retain the maximum amount of sensitivity and reduce contamination for Epoch of Reionization studies, the identification and removal of RFI is especially important. In addition to improved RFI identification, we must also take into account computational efficiency of the RFI-Identification algorithm as radio interferometer arrays such as the Hydrogen Epoch of Reionization Array grow larger in number of receivers. To address this, we present a Deep Fully Convolutional Neural Network (DFCN) that is comprehensive in its use of interferometric data, where both amplitude and phase information are used jointly for identifying RFI. We train the network using simulated HERA visibilities containing mock RFI, yielding a known ground truth dataset for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model is performed on observations from the 67 dish build-out, HERA-67, and achieves a data throughput of 1.6$times 10^{5}$ HERA time-ordered 1024 channeled visibilities per hour per GPU. We determine that relative to an amplitude only network including visibility phase adds important adjacent time-frequency context which increases discrimination between RFI and Non-RFI. The inclusion of phase when predicting achieves a Recall of 0.81, Precision of 0.58, and $F_{2}$ score of 0.75 as applied to our HERA-67 observations.



قيم البحث

اقرأ أيضاً

The Packed Ultra-wideband Mapping Array (PUMA) is a proposed low-resolution transit interferometric radio telescope operating over the frequency range 200 - 1100MHz. Its rich science portfolio will include measuring structure in the universe from red shift z = 0.3 to 6 using 21cm intensity mapping, detecting one million fast radio bursts, and monitoring thousands of pulsars. It will allow PUMA to advance science in three different areas of physics (the physics of dark energy, the physics of cosmic inflation and time-domain astrophysics). This document is a response to a request for information (RFI) by the Panel on Radio, Millimeter, and Submillimeter Observations from the Ground (RMS) of the Decadal Survey on Astronomy and Astrophysics 2020. We present the science case of PUMA, the development path and major risks to the project.
We report a framework for spectroscopic follow-up design for optimizing supernova photometric classification. The strategy accounts for the unavoidable mismatch between spectroscopic and photometric samples, and can be used even in the beginning of a new survey -- without any initial training set. The framework falls under the umbrella of active learning (AL), a class of algorithms that aims to minimize labelling costs by identifying a few, carefully chosen, objects which have high potential in improving the classifier predictions. As a proof of concept, we use the simulated data released after the Supernova Photometric Classification Challenge (SNPCC) and a random forest classifier. Our results show that, using only 12% the number of training objects in the SNPCC spectroscopic sample, this approach is able to double purity results. Moreover, in order to take into account multiple spectroscopic observations in the same night, we propose a semi-supervised batch-mode AL algorithm which selects a set of $N=5$ most informative objects at each night. In comparison with the initial state using the traditional approach, our method achieves 2.3 times higher purity and comparable figure of merit results after only 180 days of observation, or 800 queries (73% of the SNPCC spectroscopic sample size). Such results were obtained using the same amount of spectroscopic time necessary to observe the original SNPCC spectroscopic sample, showing that this type of strategy is feasible with current available spectroscopic resources. The code used in this work is available in the COINtoolbox: https://github.com/COINtoolbox/ActSNClass .
Systematic relations between multiple objects that occur in various fields can be represented as networks. Real-world networks typically exhibit complex topologies whose structural properties are key factors in characterizing and further exploring th e networks themselves. Uncertainty, modelling procedures and measurement difficulties raise often insurmountable challenges in fully characterizing most of the known real-world networks; hence, the necessity to predict their unknown elements from the limited data currently available in order to estimate possible future relations and/or to unveil unmeasurable relations. In this work, we propose a deep learning approach to this problem based on Graph Convolutional Networks for predicting networks while preserving their original structural properties. The study reveals that this method can preserve scale-free and small-world properties of complex networks when predicting their unknown parts, a feature lacked by the up-to-date conventional methods. An external validation realized by testing the approach on biological networks confirms the results, initially obtained on artificial data. Moreover, this process provides new insights into the retainability of network structure properties in network prediction. We anticipate that our work could inspire similar approaches in other research fields as well, where unknown mechanisms behind complex systems need to be revealed by combining machine-based and experiment-based methods.
Modeling and simulating a power distribution network (PDN) for printed circuit boards (PCBs) with irregular board shapes and multi-layer stackup is computationally inefficient using full-wave simulations. This paper presents a new concept of using de ep learning for PDN impedance prediction. A boundary element method (BEM) is applied to efficiently calculate the impedance for arbitrary board shape and stackup. Then over one million boards with different shapes, stackup, IC location, and decap placement are randomly generated to train a deep neural network (DNN). The trained DNN can predict the impedance accurately for new board configurations that have not been used for training. The consumed time using the trained DNN is only 0.1 seconds, which is over 100 times faster than the BEM method and 5000 times faster than full-wave simulations.
Generative Adversarial Networks (GANs) are a class of artificial neural network that can produce realistic, but artificial, images that resemble those in a training set. In typical GAN architectures these images are small, but a variant known as Spat ial-GANs (SGANs) can generate arbitrarily large images, provided training images exhibit some level of periodicity. Deep extragalactic imaging surveys meet this criteria due to the cosmological tenet of isotropy. Here we train an SGAN to generate images resembling the iconic Hubble Space Telescope eXtreme Deep Field (XDF). We show that the properties of galaxies in generated images have a high level of fidelity with galaxies in the real XDF in terms of abundance, morphology, magnitude distributions and colours. As a demonstration we have generated a 7.6-billion pixel generative deep field spanning 1.45 degrees. The technique can be generalised to any appropriate imaging training set, offering a new purely data-driven approach for producing realistic mock surveys and synthetic data at scale, in astrophysics and beyond.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا