ترغب بنشر مسار تعليمي؟ اضغط هنا

Protecting a Spin Ensemble against Decoherence in the Strong-Coupling Regime of Cavity QED

165   0   0.0 ( 0 )
 نشر من قبل Stefan Putz
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid quantum systems based on spin ensembles coupled to superconducting microwave cavities are promising candidates for robust experiments in cavity quantum electrodynamics (QED) and for future technologies employing quantum mechanical effects. Currently the main source of decoherence in these systems is inho- mogeneous spin broadening, which limits their performance for the coherent transfer and storage of quantum information. Here we study the dynamics of a superconducting cavity strongly coupled to an ensemble of nitrogen-vacancy centers in diamond. We experimentally observe for the first time, how decoherence induced by a non-Lorentzian spin distribution can be suppressed in the strong-coupling regime - a phenomenon known as cavity protection. To demonstrate the potential of this effect for coherent control schemes, we show how appropriately chosen microwave pulses can increase the amplitude of coherent oscillations between cavity and spin ensemble by two orders of magnitude.



قيم البحث

اقرأ أيضاً

The strong-coupling regime of cavity-quantum-electrodynamics (cQED) represents light-matter interaction at the fully quantum level. Adding a single photon shifts the resonance frequencies, a profound nonlinearity. cQED is a test-bed of quantum optics and the basis of photon-photon and atom-atom entangling gates. At microwave frequencies, success in cQED has had a transformative effect. At optical frequencies, the gates are potentially much faster and the photons can propagate over long distances and be easily detected, ideal features for quantum networks. Following pioneering work on single atoms, solid-state implementations are important for developing practicable quantum technology. Here, we embed a semiconductor quantum dot in a microcavity. The microcavity has a $mathcal{Q}$-factor close to $10^{6}$ and contains a charge-tunable quantum dot with close-to-transform-limited optical linewidth. The exciton-photon coupling rate $g$ exceeds both the photon decay rate $kappa$ and exciton decay rate $gamma$ by a large margin ($g/gamma=14$, $g/kappa=5.3$); the cooperativity is $C=2g^{2}/(gamma kappa)=150$, the $beta$-factor 99.7%. We observe pronounced vacuum Rabi oscillations in the time-domain, photon blockade at a one-photon resonance, and highly bunched photon statistics at a two-photon resonance. We use the change in photon statistics as a sensitive spectral probe of transitions between the first and second rungs of the Jaynes-Cummings ladder. All experiments can be described quantitatively with the Jaynes-Cummings model despite the complexity of the solid-state environment. We propose this system as a platform to develop optical-cQED for quantum technology, for instance a photon-photon entangling gate.
Demonstrating and exploiting the quantum nature of larger, more macroscopic mechanical objects would help us to directly investigate the limitations of quantum-based measurements and quantum information protocols, as well as test long standing questi ons about macroscopic quantum coherence. The field of cavity opto- and electro-mechanics, in which a mechanical oscillator is parametrically coupled to an electromagnetic resonance, provides a practical architecture for the manipulation and detection of motion at the quantum level. Reaching this quantum level requires strong coupling, interaction timescales between the two systems that are faster than the time it takes for energy to be dissipated. By incorporating a free-standing, flexible aluminum membrane into a lumped-element superconducting resonant cavity, we have increased the single photon coupling strength between radio-frequency mechanical motion and resonant microwave photons by more than two orders of magnitude beyond the current state-of-the-art. A parametric drive tone at the difference frequency between the two resonant systems dramatically increases the overall coupling strength. This has allowed us to completely enter the strong coupling regime. This is evidenced by a maximum normal mode splitting of nearly six bare cavity line-widths. Spectroscopic measurements of these dressed states are in excellent quantitative agreement with recent theoretical predictions. The basic architecture presented here provides a feasible path to ground-state cooling and subsequent coherent control and measurement of the quantum states of mechanical motion.
We derive analytical formulas for the forward emission and side emission spectra of cavity-modified single-photon sources, as well as the corresponding normal-mode oscillations in the cavity quantum electrodynamics (QED) strong-coupling regime. We in vestigate the effects of pure dephasing, treated in the phase-diffusion model based on a Wiener-Levy process, on the emission spectra and normal-mode oscillations. We also extend our previous calculation of quantum efficiency to include the pure dephasing process. All results are obtained in the Weisskopf-Wigner approximation for an impulse-excited emitter. We find that the spectra are broadened, the depths of the normal-mode oscillations are reduced and the quantum efficiency is decreased in the presence of pure dephasing.
We investigate theoretically how the ground state of a qubit-resonator system in the deep-strong coupling (DSC) regime is affected by the coupling to an environment. We employ as a variational ansatz for the ground state of the qubit-resonator-enviro nment system a superposition of coherent states displaced in qubit-state-dependent directions. We show that the reduced density matrix of the qubit-resonator system strongly depends on how the system is coupled to the environment, i.e., capacitive or inductive, because of the broken rotational symmetry of the eigenstates of the DSC system in the resonator phase space. When the resonator couples to the qubit and the environment in different ways (for instance, one is inductive and the other is capacitive), the system is almost unaffected by the resonator-waveguide coupling. In contrast, when the two couplings are of the same type (for instance, both are inductive), by increasing the resonator-waveguide coupling strength, the average number of virtual photons increases and the quantum superposition realized in the qubit-resonator entangled ground state is partially degraded. Since the superposition becomes more fragile with increasing the qubit-resonator coupling, there exists an optimal coupling strength to maximize the nonclassicality of the qubit-resonator system.
248 - Ofer Kfir 2019
This work sets a road-map towards an experimental realization of strong coupling between free-electrons and photons, and analytically explores entanglement phenomena that emerge in this regime. The proposed model unifies the strong-coupling predictio ns with known electron-photon interactions. Additionally, this work predicts a non-Columbic entanglement between freely propagating electrons. Since strong-coupling can map entanglements between photon pairs onto photon-electron pairs, it may harness electron beams for quantum communication, thus far exclusive to photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا