ﻻ يوجد ملخص باللغة العربية
In this article we start a systematic study of the bi-Lipschitz geometry of lamplighter graphs. We prove that lamplighter graphs over trees bi-Lipschitzly embed into Hamming cubes with distortion at most~$6$. It follows that lamplighter graphs over countable trees bi-Lipschitzly embed into $ell_1$. We study the metric behaviour of the operation of taking the lamplighter graph over the vertex-coalescence of two graphs. Based on this analysis, we provide metric characterizations of superreflexivity in terms of lamplighter graphs over star graphs or rose graphs. Finally, we show that the presence of a clique in a graph implies the presence of a Hamming cube in the lamplighter graph over it. An application is a characterization in terms of a sequence of graphs with uniformly bounded degree of the notion of trivial Bourgain-Milman-Wolfson type for arbitrary metric spaces, similar to Ostrovskiis characterization previously obtained in cite{ostrovskii:11}.
A quasiconformal tree is a doubling metric tree in which the diameter of each arc is bounded above by a fixed multiple of the distance between its endpoints. In this paper we show that every quasiconformal tree bi-Lipschitz embeds in some Euclidean s
We introduce the study of frames and equiangular lines in classical geometries over finite fields. After developing the basic theory, we give several examples and demonstrate finite field analogs of equiangular tight frames (ETFs) produced by modular
Large-scale sublinearly Lipschitz maps have been introduced by Yves Cornulier in order to precisely state his theorems about asymptotic cones of Lie groups. In particular, Sublinearly biLipschitz Equivalences (SBE) are a weak variant of quasiisometri
We provide a Rademacher theorem for intrinsically Lipschitz functions $phi:Usubseteq mathbb Wto mathbb L$, where $U$ is a Borel set, $mathbb W$ and $mathbb L$ are complementary subgroups of a Carnot group, where we require that $mathbb L$ is a normal
We prove the differentiability of Lipschitz maps X-->V, where X is a complete metric measure space satisfying a doubling condition and a Poincare inequality, and V is a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new ch