ترغب بنشر مسار تعليمي؟ اضغط هنا

Large optical depth frequency modulation spectroscopy

79   0   0.0 ( 0 )
 نشر من قبل Chang Chi Kwong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Band-resolved frequency modulation spectroscopy is a common method to measure weak signals of radiative ensembles. When the optical depth of the medium is large, the signal drops exponentially and the technique becomes ineffective. In this situation, we show that a signal can be recovered when a larger modulation index is applied. Noticeably, this signal can be dominated by the natural linewidth of the resonance, regardless of the presence of inhomogeneous line broadening. We implement this technique on a cesium vapor, and then explore its main spectroscopic features. This work opens the road towards measurement of cooperative emission effects in bulk atomic ensemble.



قيم البحث

اقرأ أيضاً

Direct frequency comb spectroscopy of trapped ions is demonstated for the first time. It is shown that the 4s^2S_(1/2)-4p^2P_(3/2) transition in calcium ions can be excited directly with a frequency comb laser that is upconverted to 393 nm. Detection of the transition is performed using a shelving scheme to suppress background signal from non-resonant comb modes. The measured transition frequency of f=761 905 012.7(0.5) MHz presents an improvement in accuracy of more than two orders of magnitude.
With the uncertainty of the optical clocks improving to the order of 10-18, the probe light used to detect the clock transition has demonstrated nonnegligible Stark shift, provoking to precisely evaluate this shift. Here, we demonstrate a frequency m odulation technique to realize a large measurement lever arm of the probe Stark shift with no cost of the measurement accuracy of the interleaved stabilization method. This frequency-modulated spectrum is theoretical described and experimental verified. The probe Stark shift coefficient of the 87Sr optical lattice clock is experimentally determined as -(45.97+/-3.51) Hz/(W/cm2) using this frequency modulation spectroscopy.
Optical frequency standards, lasers stabilized to atomic or molecular transitions, are widely used in length metrology and laser ranging, provide a backbone for optical communications and lie at the heart of next-generation optical atomic clocks. Her e we demonstrate a compact, low-power optical frequency standard based on the Doppler-free, two-photon transition in rubidium-87 at 778 nm implemented on a micro-optics breadboard. The optical standard achieves a fractional frequency stability of 2.9x10$^{-12}$/$sqrt{tau}$ for averaging times $tau$ less than 10$^{3}$ s, has a volume of $approx$35 cm$^3$ and operates on $approx$450 mW of electrical power. These results demonstrate a key step towards the development of compact optical clocks and the broad dissemination of SI-traceable wavelength references.
132 - Bruno Chanteau 2012
We have built a frequency chain which enables to measure the absolute frequency of a laser emitting in the 28-31 THz frequency range and stabilized onto a molecular absorption line. The set-up uses an optical frequency comb and an ultrastable 1.55 $m u$m frequency reference signal, transferred from LNE-SYRTE to LPL through an optical link. We are now progressing towards the stabilization of the mid-IR laser via the frequency comb and the extension of this technique to quantum cascade lasers. Such a development is very challenging for ultrahigh resolution molecular spectroscopy and fundamental tests of physics with molecules.
A general mechanism for the generation of frequency combs referenced to atomic resonances is put forward. The mechanism is based on the periodic phase control of a quantum systems dipole response. We develop an analytic description of the comb spectr al structure, depending on both the atomic and the phase-control properties. We further suggest an experimental implementation of our scheme: Generating a frequency comb in the soft-x-ray spectral region, which can be realized with currently available techniques and radiation sources. The universality of this mechanism allows the generalization of frequency-comb technology to arbitrary frequencies, including the hard-x-ray regime by using reference transitions in highly charged ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا