ﻻ يوجد ملخص باللغة العربية
(Pu) has an unusually rich phase diagram that includes seven distinct solid state phases and an unusually large 25% collapse in volume from its delta phase to its low temperature alpha phase via a series of structural transitions. Despite considerable advances in our understanding of strong electronic correlations within various structural phases of Pu and other actinides, the thermodynamic mechanism responsible for driving the volume collapse has continued to remain a mystery. Here we utilize the unique sensitivity of magnetostriction measurements to unstable f electron shells to uncover the crucial role played by electronic entropy in stabilizing delta-Pu against volume collapse. We find that in contrast to valence fluctuating rare earths, which typically have a single f electron shell instability whose excitations drive the volume in a single direction in temperature and magnetic field, delta-Pu exhibits two such instabilities whose excitations drive the volume in opposite directions while producing an abundance of entropy at elevated temperatures. The two instabilities imply a near degeneracy between several different configurations of the 5f atomic shell, giving rise to a considerably richer behavior than found in rare earth metals. We use heat capacity measurements to establish a robust thermodynamic connection between the two excitation energies, the atomic volume, and the previously reported excess entropy of delta-Pu at elevated temperatures.
An understanding of the phase diagram of elemental plutonium (Pu) must include both the effects of the strong directional bonding and the high density of states of the Pu 5f electrons, as well as how that bonding weakens under the influence of strong
Plutonium (Pu), in which the 5$f$ valence electrons always wander the boundary between localized and itinerant states, exhibits quite complex crystal structures and unprecedentedly anomalous properties with respect to temperature and alloying. Unders
The electronic structure of plutonium metal and its compounds pose a grand challenge for a fundamental understanding of the Pu-5$f$ electron character. For 30 years the plutonium chalcogenides have been especially challenging, and multiple theoretica
Plutonium is a critically important material as the behavior of its 5f-electrons stands midway between the metallic-like itinerant character of the light actinides and localized atomic-core-like character of the heavy actinides. The delta-phase of pl
We have measured the heat capacities of $delta-$Pu$_{0.95}$Al$_{0.05}$ and $alpha-$Pu over the temperature range 2-303 K. The availability of data below 10 K plus an estimate of the phonon contribution to the heat capacity based on recent neutron-sca