ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of Schubert Galois groups in Gr(4,9)

289   0   0.0 ( 0 )
 نشر من قبل Frank Sottile
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We classify Schubert problems in the Grassmannian of 4-planes in 9-dimensional space by their Galois groups. Of the 31,806 essential Schubert problems in this Grassmannian, only 149 have Galois group that does not contain the alternating group. We identify the Galois groups of these 149---each is an imprimitive permutation group. These 149 fall into two families according to their geometry. This study suggests a possible classification of Schubert problems whose Galois group is not the full symmetric group, and it begins to establish the inverse Galois problem for Schubert calculus.



قيم البحث

اقرأ أيضاً

We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. This constitutes the largest family of enumerative problems whose Galois groups have been largely determined. Using a criterion of Vakil and a special position argument due to Schubert, our result follows from a particular inequality among Kostka numbers of two-rowed tableaux. In most cases, a combinatorial injection proves the inequality. For the remaining cases, we use the Weyl integral formula to obtain an integral formula for these Kostka numbers. This rewrites the inequality as an integral, which we estimate to establish the inequality.
The Galois/monodromy group of a family of geometric problems or equations is a subtle invariant that encodes the structure of the solutions. Computing monodromy permutations using numerical algebraic geometry gives information about the group, but ca n only determine it when it is the full symmetric group. We give numerical methods to compute the Galois group and study it when it is not the full symmetric group. One algorithm computes generators while the other gives information on its structure as a permutation group. We illustrate these algorithms with examples using a Macaulay2 package we are developing that relies upon Bertini to perform monodromy computations.
We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a particular inequality among Kost ka numbers of two-rowed tableaux. In most cases, an easy combinatorial injection proves the inequality. For the remaining cases, we use that these Kostka numbers appear in tensor product decompositions of sl_2(C)-modules. Interpreting the tensor product as the action of certain commuting Toeplitz matrices and using a spectral analysis and Fourier series rewrites the inequality as the positivity of an integral. We establish the inequality by estimating this integral.
140 - Yuri G. Zarhin 2014
We compute the Galois groups for a certain class of polynomials over the the field of rational numbers that was introduced by S. Mori and study the monodromy of corresponding hyperelliptic jacobians.
Many aspects of Schubert calculus are easily modeled on a computer. This enables large-scale experimentation to investigate subtle and ill-understood phenomena in the Schubert calculus. A well-known web of conjectures and results in the real Schubert calculus has been inspired by this continuing experimentation. A similarly rich story concerning intrinsic structure, or Galois groups, of Schubert problems is also beginning to emerge from experimentation. This showcases new possibilities for the use of computers in mathematical research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا