ﻻ يوجد ملخص باللغة العربية
Many aspects of Schubert calculus are easily modeled on a computer. This enables large-scale experimentation to investigate subtle and ill-understood phenomena in the Schubert calculus. A well-known web of conjectures and results in the real Schubert calculus has been inspired by this continuing experimentation. A similarly rich story concerning intrinsic structure, or Galois groups, of Schubert problems is also beginning to emerge from experimentation. This showcases new possibilities for the use of computers in mathematical research.
The Macaulay2 package NumericalSchubertCalculus provides methods for the numerical computation of Schubert problems on Grassmannians. It implements both the Pieri homotopy algorithm and the Littlewood-Richardson homotopy algorithm. Each algorithm has
In the recent paper [arXiv:1612.06893] P. Burgisser and A. Lerario introduced a geometric framework for a probabilistic study of real Schubert Problems. They denoted by $delta_{k,n}$ the average number of projective $k$-planes in $mathbb{R}textrm{P}^
We describe a new approach to the Schubert calculus on complete flag varieties using the volume polynomial associated with Gelfand-Zetlin polytopes. This approach allows us to compute the intersection products of Schubert cycles by intersecting faces of a polytope.
A Newton-Okounkov polytope of a complete flag variety can be turned into a convex geometric model for Schubert calculus. Namely, we can represent Schubert cycles by linear combinations of faces of the polytope so that the intersection product of cycl
We describe a relationship between work of Laksov, Gatto, and their collaborators on realizations of (generalized) Schubert calculus of Grassmannians, and the geometric Satake correspondence of Lusztig, Ginzburg, and Mirkovic and Vilonen. Along the w