ﻻ يوجد ملخص باللغة العربية
In this paper we will develop a general approach which shows that generalized critical relations of families of locally defined holomorphic maps on the complex plane unfold transversally. The main idea is to define a transfer operator, which is a local analogue of the Thurston pullback operator, using holomorphic motions. Assuming a so-called lifting property is satisfied, we obtain information about the spectrum of this transfer operator and thus about transversality. An important new feature of our method is that it is not global: the maps we consider are only required to be defined and holomorphic on a neighbourhood of some finite set. We will illustrate this method by obtaining transversality for a wide class of one-parameter families of interval and circle maps, for example for maps with flat critical points, but also for maps with complex analytic extensions such as certain polynomial-like maps. As in Tsujiis approach cite{Tsu0,Tsu1}, for real maps we obtain {em positive} transversality (where $>0$ holds instead of just $ e 0$), and thus monotonicity of entropy for these families, and also (as an easy application) for the real quadratic family. This method additionally gives results for unimodal families of the form $xmapsto |x|^ell+c$ for $ell>1$ not necessarily an even integer and $c$ real.
In this paper we will develop a very general approach which shows that critical relations of holomorphic maps on the complex plane unfold transversally in a positively oriented way. We will mainly illustrate this approach to obtain transversality for
Threshold values in population dynamics can be formulated as spectral bounds of matrices, determining the dichotomy of population persistence and extinction. For a square matrix $mu A + Q$, where $A$ is a quasi-positive matrix describing population d
We explicitly determine the spectrum of transfer operators (acting on spaces of holomorphic functions) associated to analytic expanding circle maps arising from finite Blaschke products. This is achieved by deriving a convenient natural representation of the respective adjoint operators.
In this paper we consider families of holomorphic maps defined on subsets of the complex plane, and show that the technique developed in cite{LSvS1} to treat unfolding of critical relations can also be used to deal with cases where the critical orbit
By applying holomorphic motions, we prove that a parabolic germ is quasiconformally rigid, that is, any two topologically conjugate parabolic germs are quasiconformally conjugate and the conjugacy can be chosen to be more and more near conformal as l