ترغب بنشر مسار تعليمي؟ اضغط هنا

Positive Transversality via transfer operators and holomorphic motions with applications to monotonicity for interval maps

110   0   0.0 ( 0 )
 نشر من قبل Sebastian van Strien
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we will develop a general approach which shows that generalized critical relations of families of locally defined holomorphic maps on the complex plane unfold transversally. The main idea is to define a transfer operator, which is a local analogue of the Thurston pullback operator, using holomorphic motions. Assuming a so-called lifting property is satisfied, we obtain information about the spectrum of this transfer operator and thus about transversality. An important new feature of our method is that it is not global: the maps we consider are only required to be defined and holomorphic on a neighbourhood of some finite set. We will illustrate this method by obtaining transversality for a wide class of one-parameter families of interval and circle maps, for example for maps with flat critical points, but also for maps with complex analytic extensions such as certain polynomial-like maps. As in Tsujiis approach cite{Tsu0,Tsu1}, for real maps we obtain {em positive} transversality (where $>0$ holds instead of just $ e 0$), and thus monotonicity of entropy for these families, and also (as an easy application) for the real quadratic family. This method additionally gives results for unimodal families of the form $xmapsto |x|^ell+c$ for $ell>1$ not necessarily an even integer and $c$ real.

قيم البحث

اقرأ أيضاً

In this paper we will develop a very general approach which shows that critical relations of holomorphic maps on the complex plane unfold transversally in a positively oriented way. We will mainly illustrate this approach to obtain transversality for a wide class of one-parameter families of interval maps, for example maps with flat critical points, piecewise linear maps, maps with discontinuities but also for families of maps with complex analytic extensions such as certain polynomial-like maps.
Threshold values in population dynamics can be formulated as spectral bounds of matrices, determining the dichotomy of population persistence and extinction. For a square matrix $mu A + Q$, where $A$ is a quasi-positive matrix describing population d ispersal among patches in a heterogeneous environment and $Q$ is a diagonal matrix encoding within-patch population dynamics, the monotonicy of its spectral bound with respect to dispersal speed/coupling strength/travel frequency $mu$ is established via two methods. The first method is an analytic derivation utilizing a graph-theoretic approach based on Kirchhoffs Matrix-Tree Theorem; the second method employs Collatz-Wielandt formula from matrix theory and complex analysis arguments. It turns out that our established result is a slightly strengthen version of Karlin-Altenbergs Theorem, which has previously been discovered independently while investigating reduction principle in evolution biology and evolution dispersal in patchy landscapes. Nevertheless, our result provides a new and effective approach in stability analysis of complex biological systems in a heterogeneous environment. We illustrate this by applying our result to well-known ecological models of single species, predator-prey and competition, and an epidemiological model of susceptible-infected-susceptible (SIS) type. We successfully solve some open problems in the literature of population dynamics.
We explicitly determine the spectrum of transfer operators (acting on spaces of holomorphic functions) associated to analytic expanding circle maps arising from finite Blaschke products. This is achieved by deriving a convenient natural representation of the respective adjoint operators.
In this paper we consider families of holomorphic maps defined on subsets of the complex plane, and show that the technique developed in cite{LSvS1} to treat unfolding of critical relations can also be used to deal with cases where the critical orbit converges to a hyperbolic attracting or a parabolic periodic orbit. As before this result applies to rather general families of maps, such as polynomial-like mappings, provided some lifting property holds. Our Main Theorem states that either the multiplier of a hyperbolic attracting periodic orbit depends univalently on the parameter and bifurcations at parabolic periodic points are generic, or one has persistency of periodic orbits with a fixed multiplier.
99 - Yunping Jiang 2008
By applying holomorphic motions, we prove that a parabolic germ is quasiconformally rigid, that is, any two topologically conjugate parabolic germs are quasiconformally conjugate and the conjugacy can be chosen to be more and more near conformal as l ong as we consider these germs defined on smaller and smaller neighborhoods. Before proving this theorem, we use the idea of holomorphic motions to give a conceptual proof of the Fatou linearization theorem. As a by-product, we also prove that any finite number of analytic germs at different points in the Riemann sphere can be extended to a quasiconformal homeomorphism which can be more and more near conformal as as long as we consider these germs defined on smaller and smaller neighborhoods of these points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا