ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram of a system of hard cubes on the cubic lattice

95   0   0.0 ( 0 )
 نشر من قبل Narayanan Vigneshwar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the phase diagram of a system of $2times2times2$ hard cubes on a three dimensional cubic lattice. Using Monte Carlo simulations, we show that the system exhibits four different phases as the density of cubes is increased: disordered, layered, sublattice ordered, and columnar ordered. In the layered phase, the system spontaneously breaks up into parallel slabs of size $2times L times L$ where only a very small fraction cubes do not lie wholly within a slab. Within each slab, the cubes are disordered; translation symmetry is thus broken along exactly one principal axis. In the solid-like sublattice ordered phase, the hard cubes preferentially occupy one of eight sublattices of the cubic lattice, breaking translational symmetry along all three principal directions. In the columnar phase, the system spontaneously breaks up into weakly interacting parallel columns of size $2times 2times L$ where only a very small fraction cubes do not lie wholly within a column. Within each column, the system is disordered, and thus translational symmetry is broken only along two principal directions. Using finite size scaling, we show that the disordered-layered phase transition is continuous, while the layered-sublattice and sublattice-columnar transitions are discontinuous. We construct a Landau theory written in terms of the layering and columnar order parameters, which is able to describe the different phases that are observed in the simulations and the order of the transitions. Additionally, our results near the disordered-layered transition are consistent with the $O(3)$ universality class perturbed by cubic anisotropy as predicted by the Landau theory.



قيم البحث

اقرأ أيضاً

We define a generalised model for three-stranded DNA consisting of two chains of one type and a third chain of a different type. The DNA strands are modelled by random walks on the three-dimensional cubic lattice with different interactions between t wo chains of the same type and two chains of different types. This model may be thought of as a classical analogue of the quantum three-body problem. In the quantum situation it is known that three identical quantum particles will form a triplet with an infinite tower of bound states at the point where any pair of particles would have zero binding energy. The phase diagram is mapped out, and the different phase transitions examined using finite-size scaling. We look particularly at the scaling of the DNA model at the equivalent Efimov point for chains up to 10000 steps in length. We find clear evidence of several bound states in the finite-size scaling. We compare these states with the expected Efimov behaviour.
A system of hard rigid rods of length $k$ on hypercubic lattices is known to undergo two phases transitions when chemical potential is increased: from a low density isotropic phase to an intermediate density nematic phase, and on further increase to a high-density phase with no orientational order. In this paper, we argue that, for large $k$, the second phase transition is a first order transition with a discontinuity in density in all dimensions greater than $1$. We show the chemical potential at the transition is $approx k ln [k /ln k]$ for large $k$, and that the density of uncovered sites drops from a value $ approx (ln k)/k^2$ to a value of order $exp(-ak)$, where $a$ is some constant, across the transition. We conjecture that these results are asymptotically exact, in all dimensions $dgeq 2$. We also present evidence of coexistence of nematic and disordered phases from Monte Carlo simulations for rods of length $9$ on the square lattice.
The competition between interactions and dissipative processes in a quantum many-body system can drive phase transitions of different order. Exploiting a combination of cluster methods and quantum trajectories, we show how the systematic inclusion of (classical and quantum) nonlocal correlations at increasing distances is crucial to determine the structure of the phase diagram, as well as the nature of the transitions in strongly interacting spin systems. In practice, we focus on the paradigmatic dissipative quantum Ising model: in contrast to the non-dissipative case, its phase diagram is still a matter of debate in the literature. When dissipation acts along the interaction direction, we predict important quantitative modifications of the position of the first-order transition boundary. In the case of incoherent relaxation in the field direction, our approach confirms the presence of a second-order transition, while does not support the possible existence of multicritical points. Potentially, these results can be tested in up-to date quantum simulators of Rydberg atoms.
In this paper, we study phase diagrams of dipolar hard-core boson gases on the honeycomb lattice. The system is described by the Haldane-Bose-Hubbard model with complex hopping amplitudes and the nearest neighbor repulsion. By using the slave-particl e representation of the hard-core bosons and also the path-integral quantum Monte-Carlo simulations, we investigate the system and to show that the systems have a rich phase diagram. There are Mott, superfluid, chiral superfluid, and sublattice chiral superfluid phases as well as the density-wave phase. We also found that there exists a coexisting phase of superfluid and chiral superfluid. Critical behaviors of the phase transitions are also clarified.
Using the bosonization and level spectroscopy methods, we study the ground-state phase diagram of a XXZ antiferromagnet on a railroad-trestle lattice with asymmetric leg interactions. It is shown that the asymmetry does not change the dimer/Neel tran sition line significantly, which agrees with the expectation based on a naive bosonization procedure, but it does change the dimer/spin-fluid transition line. To understand this observation, we analyze eigenvectors of the ground state, dimer excitation, doublet excitation and Neel excitation, and find that only the doublet excitation is affected by the asymmetric interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا