ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram of the dissipative quantum Ising model on a square lattice

347   0   0.0 ( 0 )
 نشر من قبل Davide Rossini
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The competition between interactions and dissipative processes in a quantum many-body system can drive phase transitions of different order. Exploiting a combination of cluster methods and quantum trajectories, we show how the systematic inclusion of (classical and quantum) nonlocal correlations at increasing distances is crucial to determine the structure of the phase diagram, as well as the nature of the transitions in strongly interacting spin systems. In practice, we focus on the paradigmatic dissipative quantum Ising model: in contrast to the non-dissipative case, its phase diagram is still a matter of debate in the literature. When dissipation acts along the interaction direction, we predict important quantitative modifications of the position of the first-order transition boundary. In the case of incoherent relaxation in the field direction, our approach confirms the presence of a second-order transition, while does not support the possible existence of multicritical points. Potentially, these results can be tested in up-to date quantum simulators of Rydberg atoms.



قيم البحث

اقرأ أيضاً

We investigate the role of a transverse field on the Ising square antiferromagnet with first-($J_1$) and second-($J_2$) neighbor interactions. Using a cluster mean-field approach, we provide a telltale characterization of the frustration effects on t he phase boundaries and entropy accumulation process emerging from the interplay between quantum and thermal fluctuations. We found that the paramagnetic (PM) and antiferromagnetic phases are separated by continuous phase transitions. On the other hand, continuous and discontinuous phase transitions, as well as tricriticality, are observed in the phase boundaries between PM and superantiferromagnetic phases. A rich scenario arises when a discontinuous phase transition occurs in the classical limit while quantum fluctuations recover criticality. We also find that the entropy accumulation process predicted to occur at temperatures close to the quantum critical point can be enhanced by frustration. Our results provide a description for the phase boundaries and entropy behavior that can help to identify the ratio $J_2/J_1$ in possible experimental realizations of the quantum $J_1$-$J_2$ Ising antiferromagnet.
136 - Junqi Yin , D. P. Landau 2009
Using the parallel tempering algorithm and GPU accelerated techniques, we have performed large-scale Monte Carlo simulations of the Ising model on a square lattice with antiferromagnetic (repulsive) nearest-neighbor(NN) and next-nearest-neighbor(NNN) interactions of the same strength and subject to a uniform magnetic field. Both transitions from the (2x1) and row-shifted (2x2) ordered phases to the paramagnetic phase are continuous. From our data analysis, reentrance behavior of the (2x1) critical line and a bicritical point which separates the two ordered phases at T=0 are confirmed. Based on the critical exponents we obtained along the phase boundary, Suzukis weak universality seems to hold.
93 - G. M. Viswanathan 2017
An important problem in statistical physics concerns the fascinating connections between partition functions of lattice models studied in equilibrium statistical mechanics on the one hand and graph theoretical enumeration problems on the other hand. We investigate the nature of the relationship between the number of spanning trees and the partition function of the Ising model on the square lattice. The spanning tree generating function $T(z)$ gives the spanning tree constant when evaluated at $z=1$, while giving he lattice green function when differentiated. It is known that for the infinite square lattice the partition function $Z(K)$ of the Ising model evaluated at the critical temperature $K=K_c$ is related to $T(1)$. Here we show that this idea in fact generalizes to all real temperatures. We prove that $ ( Z(K) {rm sech~} 2K ~!)^2 = k expbig[ T(k) big] $, where $k= 2 tanh(2K) {rm sech}(2K)$. The identical Mahler measure connects the two seemingly disparate quantities $T(z)$ and $Z(K)$. In turn, the Mahler measure is determined by the random walk structure function. Finally, we show that the the above correspondence does not generalize in a straightforward manner to non-planar lattices.
143 - C.J. Hamer 2000
Energy eigenvalues and order parameters are calculated by exact diagonalization for the transverse Ising model on square lattices of up to 6x6 sites. Finite-size scaling is used to estimate the critical parameters of the model, confirming universalit y with the three-dimensional classical Ising model. Critical amplitudes are also estimated for both the energy gap and the ground-state energy.
117 - Jozef Genzor , Andrej Gendiar , 2015
Phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is extended by a factor of fo ur. The free energy and the spontaneous magnetization of the system are obtained by means of the higher-order tensor renormalization group method. The system exhibits the order-disorder phase transition, where the critical indices are different from that of the square-lattice Ising model. An exponential decay is observed in the density matrix spectrum even at the critical point. It is possible to interpret that the system is less entangled because of the fractal geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا