ﻻ يوجد ملخص باللغة العربية
Single crystalline bismuth (Bi) is known to have a peculiar electronic structure which is very close to the topological phase transition. The modification of the surface states of Bi depending on the temperature are revealed by angle-resolved photoelectron spectroscopy (ARPES). At low temperature, the upper branch of the surface state merged to the projected bulk conduction bands around the $bar{M}$ point of the surface Brillouin zone (SBZ). In contrast, the same branch merged to the projected bulk valence bands at high temperature (400 K). Such behavior could be interpreted as a topological phase transition driven by the temperature, which might be applicable for future spin-thermoelectric devices. We discuss the possible mechanisms to cause such transition, such as the thermal lattice distortion and electron-phonon coupling.
We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the
Electronic materials properties are determined by the interplay of many competing factors. Electro-magnetic fields strong enough to rival atomic interactions can disturb the balance between kinematic effects due to electrons hopping between lattice s
Topological quantum materials coupled with magnetism can provide a platform for realizing rich exotic physical phenomena, including quantum anomalous Hall effect, axion electrodynamics and Majorana fermions. However, these unusual effects typically r
Strain can affect the morphology of a crystal surface, and cause modifications of its reconstruction even when weak, as in the case of mechanical bending. We carried out calculations of strain-dependent surface free energy and direct bending simulati
The observation of metallic interface between band insulators LaAlO$_3$ and SrTiO$_3$ has led to massive efforts to understand the origin of the phenomenon as well as to search for other systems hosting such two dimensional electron gases (2-DEG). Ho