ترغب بنشر مسار تعليمي؟ اضغط هنا

Acoustic scattering mediated single detector optoacoustic tomography

72   0   0.0 ( 0 )
 نشر من قبل Xose Luis Dean Ben
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Optoacoustic image formation is conventionally based upon ultrasound time-of-flight readings from multiple detection positions. Herein, we exploit acoustic scattering to physically encode the position of optical absorbers in the acquired signals, thus reduce the amount of data required to reconstruct an image from a single waveform. This concept is experimentally tested by including a random distribution of scatterers between the sample and an ultrasound detector array. Ultrasound transmission through a randomized scattering medium was calibrated by raster scanning a light-absorbing microparticle across a Cartesian grid. Image reconstruction from a single time-resolved signal was then enabled with a regularized model-based iterative algorithm relying on the calibration signals. The signal compression efficiency is facilitated by the relatively short acquisition time window needed to capture the entire scattered wavefield. The demonstrated feasibility to form an image using a single recorded optoacoustic waveform paves a way to the development of faster and affordable optoacoustic imaging systems.



قيم البحث

اقرأ أيضاً

Localization-based imaging has revolutionized fluorescence optical microscopy and has also enabled unprecedented ultrasound images of microvascular structures in deep tissues. Herein, we introduce a new concept of localization optoacoustic tomography (LOAT) that employs rapid sequential acquisition of three-dimensional optoacoustic images from flowing absorbing particles. We show that the new method enables breaking through the spatial resolution barrier of acoustic diffraction while further enhancing the visibility of structures under limited-view tomographic conditions. Given the intrinsic sensitivity of optoacoustics to multiple hemodynamic and oxygenation parameters, LOAT may enable new level of performance in studying functional and anatomical alterations of microcirculation.
Optical diffraction tomography is an indispensable tool for studying objects in three-dimensions due to its ability to accurately reconstruct scattering objects. Until now this technique has been limited to coherent light because spatial phase inform ation is required to solve the inverse scattering problem. We introduce a method that extends optical diffraction tomography to imaging spatially incoherent contrast mechanisms such as fluorescent emission. Our strategy mimics the coherent scattering process with two spatially coherent illumination beams. The interferometric illumination pattern encodes spatial phase in temporal variations of the fluorescent emission, thereby allowing incoherent fluorescent emission to mimic the behavior of coherent illumination. The temporal variations permit recovery of the propagation phase, and thus the spatial distribution of incoherent fluorescent emission can be recovered with an inverse scattering model.
As an emerging technology, transcranial focused ultrasound has been demonstrated to successfully evoke motor responses in mice, rabbits, and sensory/motor responses in humans. Yet, the spatial resolution of ultrasound does not allow for high-precisio n stimulation. Here, we developed a tapered fiber optoacoustic emitter (TFOE) for optoacoustic stimulation of neurons with an unprecedented spatial resolution of 20 microns, enabling selective activation of single neurons or subcellular structures, such as axons and dendrites. A single acoustic pulse of 1 microsecond converted by the TFOE from a single laser pulse of 3 nanoseconds is shown as the shortest acoustic stimuli so far for successful neuron activation. The highly localized ultrasound generated by the TFOE made it possible to integrate the optoacoustic stimulation and highly stable patch clamp recording on single neurons. Direct measurements of electrical response of single neurons to acoustic stimulation, which is difficult for conventional ultrasound stimulation, have been demonstrated for the first time. By coupling TFOE with ex vivo brain slice electrophysiology, we unveil cell-type-specific response of excitatory and inhibitory neurons to acoustic stimulation. These results demonstrate that TFOE is a non-genetic single-cell and sub-cellular modulation technology, which could shed new insights into the mechanism of neurostimulation.
Acoustic-resolution optoacoustic microscopy (AR-OAM) retrieves anatomical and functional contrast from living tissues at depths not reachable with optical microscopy. The imaging performance of AR-OAM has been advanced with image reconstruction algor ithms providing high lateral resolution ultimately limited by acoustic diffraction. In this work, we suggest a new model-based framework efficiently exploiting scanning symmetries for high-resolution reconstruction of AR-OAM images. The model accurately accounts for the spatial impulse response and large detection bandwidth of a spherical polyvinylidene difluoride sensor, which facilitates significantly outperforming synthetic aperture focusing technique commonly employed in AR-OAM image reconstruction in terms of image contrast and resolution. Furthermore, reconstructions based on L1-norm regularization enabled resolving structures indistinguishable with other methods, which was confirmed by numerical simulations as well as phantom and in vivo experiments. The achieved performance demonstrates the applicability of AR-OAM as a super-resolution imaging method capable of breaking through the limits imposed by acoustic diffraction, thus opening unprecedented capabilities for the microscopic interrogation of optically opaque tissues in preclinical and clinical studies.
Interactions mediated by the cell membrane between inclusions, such as membrane proteins or antimicrobial peptides, play important roles in their biological activity. They also constitute a fascinating challenge for physicists, since they test the bo undaries of our understanding of self-assembled lipid membranes, which are remarkable examples of two-dimensional complex fluids. Inclusions can couple to various degrees of freedom of the membrane, resulting in different types of interactions. In this chapter, we review the membrane-mediated interactions that arise from direct constraints imposed by inclusions on the shape of the membrane. These effects are generic and do not depend on specific chemical interactions. Hence, they can be studied using coarse-grained soft matter descriptions. We deal with long-range membrane-mediated interactions due to the constraints imposed by inclusions on membrane curvature and on its fluctuations. We also discuss the shorter-range interactions that arise from the constraints on membrane thickness imposed by inclusions presenting a hydrophobic mismatch with the membrane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا