ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma band oscillations reflect sensory and affective dimensions of pain

136   0   0.0 ( 0 )
 نشر من قبل Jamila Andoh
 تاريخ النشر 2019
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pain is a multidimensional process, which can be modulated by emotions, however, the mechanisms underlying this modulation are unknown. We used pictures with different emotional valence (negative, positive, neutral) as primes and applied electrical painful stimuli as targets to healthy participants. We assessed pain intensity and unpleasantness ratings and recorded electroencephalograms (EEG). We found that pain unpleasantness, and not pain intensity ratings were modulated by emotion, with increased ratings for negative and decreased for positive pictures. We also found two consecutive gamma band oscillations (GBOs) related to pain processing from time frequency analyses of the EEG signals. An early GBO had a cortical distribution contralateral to the painful stimulus, and its amplitude was positively correlated with intensity and unpleasantness ratings, but not with prime valence. The late GBO had a centroparietal distribution and its amplitude was larger for negative compared to neutral and positive pictures. The emotional modulation effect (negative versus positive) of the late GBO amplitude was positively correlated with pain unpleasantness. The early GBO might reflect the overall pain perception, possibly involving the thalamocortical circuit, while the late GBO might be related to the affective dimension of pain and top-down related processes.


قيم البحث

اقرأ أيضاً

Chronic pain affects about 100 million adults in the US. Despite their great need, neuropharmacology and neurostimulation therapies for chronic pain have been associated with suboptimal efficacy and limited long-term success, as their mechanisms of a ction are unclear. Yet current computational models of pain transmission suffer from several limitations. In particular, dorsal column models do not include the fundamental underlying sensory activity traveling in these nerve fibers. We developed a (simple) simulation test bed of electrical neurostimulation of myelinated nerve fibers with underlying sensory activity. This paper reports our findings so far. Interactions between stimulation-evoked and underlying activities are mainly due to collisions of action potentials and losses of excitability due to the refractory period following an action potential. In addition, intuitively, the reliability of sensory activity decreases as the stimulation frequency increases. This first step opens the door to a better understanding of pain transmission and its modulation by neurostimulation therapies.
The posterior parietal cortex (PPC) has a unique role in memory retrieval: fMRI and electrocorticography studies suggest that within the ventral PPC (VPC) specifically, there is an anterior-posterior functional divergence between externally-oriented and internally-oriented attention to memory (AtoM). However, the role of VPC during verbal episodic encoding, and the relationship between encoding- and retrieval-related activity, is less understood. Here we show that activation within a subregion of VPC is doubly dissociated between its anterior and posterior parts, during encoding compared to recall in a free recall task. We found that regional activation defined by increased high gamma power and decreased beta power oscillations during encoding and recall correlated with recall success. During word encoding, iEEG sites that showed this correlation were located anterior to those that showed deactivation. Conversely, during word recall, sites that showed stronger correlations between activity and number of words recalled were located more posteriorly. Our results demonstrate the significance of high gamma and beta oscillations suggesting a push-pull relationship between attention to external stimuli and internal memories within left ventral PPC. Knowledge of this divergence of function along the anterior-posterior axis within left ventral PPC may prove useful for guiding brain stimulation strategies.
250 - Bianca Hardy 2007
Paul Bach Y Rita [1] is the precursor of sensory substitutions. He started thirty years ago using visuo-tactile prostheses with the intent of satisfying blind people. These prostheses, called Tactile Vision Substitution Systems (TVSS), transform a se nsory input from a given modality (vision) into another modality (touch). These new systems seemed to induce quasi-visual perceptions. One of the authors interests dealt with the understanding of the coupling between actions and sensations in perception mechanisms [4]. Throughout his search, he noticed that the subjects had to move the camera themselves in order to recognise a 3D target-object or a figure placed in front of them. Our work consists in understanding how sensory information provided by a visuo-tactile prosthesis can be used for motor behaviour. In this aim, we used the most simple substitution device (one photoreceptor coupled with one tactile stimulator) in order to control and enrich our knowledge of the ties between perception and action.
It has been hypothesized that Gamma cortical oscillations play important roles in numerous cognitive processes and may involve psychiatric conditions including anxiety, schizophrenia, and autism. Gamma rhythms are commonly observed in many brain regi ons during both waking and sleep states, yet their functions and mechanisms remain a matter of debate. Spatiotemporal Gamma oscillations can explain neuronal representation, computation, and the shaping of communication among cortical neurons, even neurological and neuropsychiatric disorders in neo-cortex. In this study, the neural network dynamics and spatiotemporal behavior in the cerebral cortex are examined during Gamma brain activity. We have directly observed the Gamma oscillations on visual processing as spatiotemporal waves induced by targeted optogenetics stimulation. We have experimentally demonstrated the constant optogenetics stimulation based on the ChR2 opsin under the control of the CaMKII{alpha} promotor, which can induce sustained narrowband Gamma oscillations in the visual cortex of rats during their comatose states. The injections of the viral vector [LentiVirus CaMKII{alpha} ChR2] was performed at two different depths, 200 and 500 mu m. Finally, we computationally analyze our results via Wilson-Cowan model.
Oscillations are a hallmark of neural population activity in various brain regions with a spectrum covering a wide range of frequencies. Within this spectrum gamma oscillations have received particular attention due to their ubiquitous nature and to their correlation with higher brain functions. Recently, it has been reported that gamma oscillations in the hippocampus of behaving rodents are segregated in two distinct frequency bands: slow and fast. These two gamma rhythms correspond to dfferent states of the network, but their origin has been not yet clarified. Here, we show theoretically and numerically that a single inhibitory population can give rise to coexisting slow and fast gamma rhythms corresponding to collective oscillations of a balanced spiking network. The slow and fast gamma rhythms are generated via two different mechanisms: the fast one being driven by the coordinated tonic neural firing and the slow one by endogenous fluctuations due to irregular neural activity. We show that almost instantaneous stimulations can switch the collective gamma oscillations from slow to fast and vice versa. Furthermore, to make a closer contact with the experimental observations, we consider the modulation of the gamma rhythms induced by a slower (theta) rhythm driving the network dynamics. In this context, depending on the strength of the forcing, we observe phase-amplitude and phase-phase coupling between the fast and slow gamma oscillations and the theta forcing. Phase-phase coupling reveals different theta-phases preferences for the two coexisting gamma rhythms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا