ترغب بنشر مسار تعليمي؟ اضغط هنا

High gamma and beta band oscillations in left ventral posterior parietal cortex are regionally dissociated during verbal episodic encoding and recall

72   0   0.0 ( 0 )
 نشر من قبل Daniel Rubinstein
 تاريخ النشر 2019
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The posterior parietal cortex (PPC) has a unique role in memory retrieval: fMRI and electrocorticography studies suggest that within the ventral PPC (VPC) specifically, there is an anterior-posterior functional divergence between externally-oriented and internally-oriented attention to memory (AtoM). However, the role of VPC during verbal episodic encoding, and the relationship between encoding- and retrieval-related activity, is less understood. Here we show that activation within a subregion of VPC is doubly dissociated between its anterior and posterior parts, during encoding compared to recall in a free recall task. We found that regional activation defined by increased high gamma power and decreased beta power oscillations during encoding and recall correlated with recall success. During word encoding, iEEG sites that showed this correlation were located anterior to those that showed deactivation. Conversely, during word recall, sites that showed stronger correlations between activity and number of words recalled were located more posteriorly. Our results demonstrate the significance of high gamma and beta oscillations suggesting a push-pull relationship between attention to external stimuli and internal memories within left ventral PPC. Knowledge of this divergence of function along the anterior-posterior axis within left ventral PPC may prove useful for guiding brain stimulation strategies.



قيم البحث

اقرأ أيضاً

Background: We sought to determine if ripple oscillations (80-120Hz), detected in intracranial EEG (iEEG) recordings of epilepsy patients, correlate with an enhancement or disruption of verbal episodic memory encoding. Methods: We defined ripple and spike events in depth iEEG recordings during list learning in 107 patients with focal epilepsy. We used logistic regression models (LRMs) to investigate the relationship between the occurrence of ripple and spike events during word presentation and the odds of successful word recall following a distractor epoch, and included the seizure onset zone (SOZ) as a covariate in the LRMs. Results: We detected events during 58,312 word presentation trials from 7,630 unique electrode sites. The probability of ripple on spike (RonS) events was increased in the seizure onset zone (SOZ, p<0.04). In the left temporal neocortex RonS events during word presentation corresponded with a decrease in the odds ratio (OR) of successful recall, however this effect only met significance in the SOZ (OR of word recall 0.71, 95% CI: 0.59-0.85, n=158 events, adaptive Hochberg p<0.01). Ripple on oscillation events (RonO) that occurred in the left temporal neocortex non-SOZ also correlated with decreased odds of successful recall (OR 0.52, 95% CI: 0.34-0.80, n=140, adaptive Hochberg , p<0.01). Spikes and RonS that occurred during word presentation in the left middle temporal gyrus during word presentation correlated with the most significant decrease in the odds of successful recall, irrespective of the location of the SOZ (adaptive Hochberg, p<0.01). Conclusion: Ripples and spikes generated in left temporal neocortex are associated with impaired verbal episodic memory encoding.
It has been hypothesized that Gamma cortical oscillations play important roles in numerous cognitive processes and may involve psychiatric conditions including anxiety, schizophrenia, and autism. Gamma rhythms are commonly observed in many brain regi ons during both waking and sleep states, yet their functions and mechanisms remain a matter of debate. Spatiotemporal Gamma oscillations can explain neuronal representation, computation, and the shaping of communication among cortical neurons, even neurological and neuropsychiatric disorders in neo-cortex. In this study, the neural network dynamics and spatiotemporal behavior in the cerebral cortex are examined during Gamma brain activity. We have directly observed the Gamma oscillations on visual processing as spatiotemporal waves induced by targeted optogenetics stimulation. We have experimentally demonstrated the constant optogenetics stimulation based on the ChR2 opsin under the control of the CaMKII{alpha} promotor, which can induce sustained narrowband Gamma oscillations in the visual cortex of rats during their comatose states. The injections of the viral vector [LentiVirus CaMKII{alpha} ChR2] was performed at two different depths, 200 and 500 mu m. Finally, we computationally analyze our results via Wilson-Cowan model.
Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus properties. It has been argued that synchronized oscillations contribute to these gamma-band activity [... however,] even when oscillations are observed, they undergo temporal decorrelation over very few cycles. This is not easily accounted for in previous network modeling of gamma oscillations. We argue here that interactions between cortical layers can be responsible for this fast decorrelation. We study a model of a V1 hypercolumn, embedding a simplified description of the multi-layered structure of the cortex. When the stimulus contrast is low, the induced activity is only weakly synchronous and the network resonates transiently without developing collective oscillations. When the contrast is high, on the other hand, the induced activity undergoes synchronous oscillations with an irregular spatiotemporal structure expressing a synchronous chaotic state. As a consequence the population activity undergoes fast temporal decorrelation, with concomitant rapid damping of the oscillations in LFPs autocorrelograms and peak broadening in LFPs power spectra. [...] Finally, we argue that the mechanism underlying the emergence of synchronous chaos in our model is in fact very general. It stems from the fact that gamma oscillations induced by local delayed inhibition tend to develop chaos when coupled by sufficiently strong excitation.
Pain is a multidimensional process, which can be modulated by emotions, however, the mechanisms underlying this modulation are unknown. We used pictures with different emotional valence (negative, positive, neutral) as primes and applied electrical p ainful stimuli as targets to healthy participants. We assessed pain intensity and unpleasantness ratings and recorded electroencephalograms (EEG). We found that pain unpleasantness, and not pain intensity ratings were modulated by emotion, with increased ratings for negative and decreased for positive pictures. We also found two consecutive gamma band oscillations (GBOs) related to pain processing from time frequency analyses of the EEG signals. An early GBO had a cortical distribution contralateral to the painful stimulus, and its amplitude was positively correlated with intensity and unpleasantness ratings, but not with prime valence. The late GBO had a centroparietal distribution and its amplitude was larger for negative compared to neutral and positive pictures. The emotional modulation effect (negative versus positive) of the late GBO amplitude was positively correlated with pain unpleasantness. The early GBO might reflect the overall pain perception, possibly involving the thalamocortical circuit, while the late GBO might be related to the affective dimension of pain and top-down related processes.
Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, howev er, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs) and thalamic outputs (spikes) and analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz), is encoded by average firing rate with respect to the stimulus and carries information about local changes in the image over time. The other operates in the gamma frequency band (40-80 Hz) and is encoded by spike time relative to the retinal oscillations. Because these oscillations involve extensive areas of the retina, it is likely that the second channel transmits information about global features of the visual scene. At times, the second channel conveyed even more information than the first.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا