ﻻ يوجد ملخص باللغة العربية
Shastry-Sutherland lattice was observed as alternative ground state in Rare Earth intermetallic with Mo$_2$B$_2$Fe and U$_2$Pt$_2$Sn anisotropic structures where magnetic frustration is favored. In the case of Ce$_2$Pd$_2$Sn, it was shown that such phase can be suppressed by the application of magnetic field and, in this work, its stability is studied as a function of the electronic concentration by doping the Sn(4+) lattice with In(3+) atoms. Magnetic and specific heat measurements show that around 50% substitution the Shastry Sutherland lattice vanishes in a critical point. This result confirms the strong dependence of that phase on the electron density because a recent investigation on the Pd rich solid solution Ce$_{2+epsilon}$Pd$_{2-epsilon}$In$_{1-x}$Sn$_x$ (with $epsilon < 0$) demonstrates that atomic disorder dominates the phase diagram at intermediate Sn/In concentration inhibiting magnetic frustration effects. In the alloys investigated in this work, the $epsilon >0$ character stabilizes the ferromagnetic ground state all along the concentration, allowing the Shastry Sutherland lattice formation on the Sn rich side.
Structural, magnetization and heat capacity measurements were performed on Ce$_2$(Pd$_{1-x}$Ni$_x$)$_2$Sn ($0 leq x leq 0.25$) alloys, covering the full range of the Mo$_2$FeB$_2$ structure stability. In this system, the two transitions observed in C
The magnetic phase diagram of Ce$_2$Pd$_2$Sn is investigated through the field dependence of thermal, transport and magnetic measurements performed at low temperature. The upper transition, $T_M=4.8$ K is practically not affected by magnetic field up
Structural, magnetization and heat capacity studies were performed on Ce$_2$(Pd$_{1-x}$Ni$_x$)$_2$Sn ($0 leq x leq 1$) alloys. The substitution of Pd atoms by isoelectronic Ni leads to a change in the crystallographic structure from tetragonal (for $
We present magnetic torque measurements on the Shastry-Sutherland quantum spin system SrCu$_2$(BO$_3$)$_2$ in fields up to 31 T and temperatures down to 50 mK. A new quantum phase is observed in a 1 T field range above the 1/8 plateau, in agreement w
Using inelastic neutron scattering, x-ray, neutron diffraction, and the first-principle calculation techniques, we show that the crystal structure of the two-dimensional quantum spin system (CuCl)LaNb$_2$O$_7$ is orthorhombic with $Pbam$ symmetry in