ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of the Shastry-Sutherland phase in Ce$_{2}$Pd$_{2}$Sn at a field induced critical point

58   0   0.0 ( 0 )
 نشر من قبل Julian Sereni
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic phase diagram of Ce$_2$Pd$_2$Sn is investigated through the field dependence of thermal, transport and magnetic measurements performed at low temperature. The upper transition, $T_M=4.8$ K is practically not affected by magnetic field up to B=1 T, whereas the lower one $T_C(B)$ rapidly increases from 2.1 K joining $T_M$ in a critical point at $T_{cr}=(4.2pm 0.3$)K for $B_{cr}=(0.12pm 0.03)$ T. At that point the intermediate phase, previously described as an unstable Shastry-Sutherland phase, is suppressed. A detailed analysis around the critical point reveals a structure in the maximum of the $partial M/partial B(B)$ derivative which could be related to the formation of a novel phase in that critical region.

قيم البحث

اقرأ أيضاً

Structural, magnetization and heat capacity measurements were performed on Ce$_2$(Pd$_{1-x}$Ni$_x$)$_2$Sn ($0 leq x leq 0.25$) alloys, covering the full range of the Mo$_2$FeB$_2$ structure stability. In this system, the two transitions observed in C e$_2$Pd$_2$Sn (at $T_N=4.8$,K and $T_C=2.1$,K respectively) converge into a tri-critical point at $T_{cr}approx 3.4$,K for $xapprox 0.3$, where the intermediate antiferromagnetic AF phase is suppressed. The $T_N(x)$ phase boundary decrease is due to an incipient Kondo screening of the Ce-4f moments and local atomic disorder in the alloy. Both mechanisms affect the formation of Ce-magnetic dimers on which the Shastry-Sutherland lattice (SSL) builds up. On the contrary, the $T_C(x)$ transition to the ferromagnetic ground state increases as a consequence of the weakening of the AF-SSL phase. Applied magnetic field also suppresses the AF phase like in the stoichiometric compound.
Shastry-Sutherland lattice was observed as alternative ground state in Rare Earth intermetallic with Mo$_2$B$_2$Fe and U$_2$Pt$_2$Sn anisotropic structures where magnetic frustration is favored. In the case of Ce$_2$Pd$_2$Sn, it was shown that such p hase can be suppressed by the application of magnetic field and, in this work, its stability is studied as a function of the electronic concentration by doping the Sn(4+) lattice with In(3+) atoms. Magnetic and specific heat measurements show that around 50% substitution the Shastry Sutherland lattice vanishes in a critical point. This result confirms the strong dependence of that phase on the electron density because a recent investigation on the Pd rich solid solution Ce$_{2+epsilon}$Pd$_{2-epsilon}$In$_{1-x}$Sn$_x$ (with $epsilon < 0$) demonstrates that atomic disorder dominates the phase diagram at intermediate Sn/In concentration inhibiting magnetic frustration effects. In the alloys investigated in this work, the $epsilon >0$ character stabilizes the ferromagnetic ground state all along the concentration, allowing the Shastry Sutherland lattice formation on the Sn rich side.
We report the microscopic magnetic model for the spin-1/2 Heisenberg system CdCu2(BO3)2, one of the few quantum magnets showing the 1/2-magnetization plateau. Recent neutron diffraction experiments on this compound [M. Hase et al., Phys. Rev. B 80, 1 04405 (2009)] evidenced long-range magnetic order, inconsistent with the previously suggested phenomenological magnetic model of isolated dimers and spin chains. Based on extensive density-functional theory band structure calculations, exact diagonalizations, quantum Monte Carlo simulations, third-order perturbation theory, as well as high-field magnetization measurements, we find that the magnetic properties of CdCu2(BO3)2 are accounted for by a frustrated quasi-2D magnetic model featuring four inequivalent exchange couplings: the leading antiferromagnetic coupling J_d within the structural Cu2O6 dimers, two interdimer couplings J_t1 and J_t2, forming magnetic tetramers, and a ferromagnetic coupling J_it between the tetramers. Based on comparison to the experimental data, we evaluate the ratios of the leading couplings J_d : J_t1 : J_t2 : J_it = 1 : 0.20 : 0.45 : -0.30, with J_d of about 178 K. The inequivalence of J_t1 and J_t2 largely lifts the frustration and triggers long-range antiferromagnetic ordering. The proposed model accounts correctly for the different magnetic moments localized on structurally inequivalent Cu atoms in the ground-state magnetic configuration. We extensively analyze the magnetic properties of this model, including a detailed description of the magnetically ordered ground state and its evolution in magnetic field with particular emphasis on the 1/2-magnetization plateau. Our results establish remarkable analogies to the Shastry-Sutherland model of SrCu2(BO3)2, and characterize the closely related CdCu2(BO3)2 as a material realization for the spin-1/2 decorated anisotropic Shastry-Sutherland lattice.
Motivated by the intriguing properties of the Shastry-Sutherland compound SrCu2(BO3)2 under pressure, with a still debated intermediate plaquette phase appearing at around 20 kbar and a possible deconfined critical point at higher pressure upon enter ing the antiferromagnetic phase, we have investigated its high-field properties in this pressure range using tunnel diode oscillator (TDO) measurements. The two main new phases revealed by these measurements are fully consistent with those identified by infinite Projected Entangled Pair states (iPEPS) calculations of the Shastry-Sutherland model, a 1/5 plateau and a 10 x 2 supersolid. Remarkably, these phases are descendants of the full-plaquette phase, the prominent candidate for the intermediate phase of SrCu2(BO3)2. The emerging picture for SrCu2(BO3)2 is shown to be that of a system dominated by a tendency to an orthorhombic distortion at intermediate pressure, an important constraint on any realistic description of the transition into the antiferromagnetic phase.
Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the previously known plaquette-singlet and ant iferromagnetic states. Our conclusions are based on finite-size scaling of excited level crossings and order parameters. Together with previous results on candidate models for deconfined quantum criticality and spin liquid phases, our results point to a unified quantum phase diagram where the deconfined quantum-critical point separates a line of first-order transitions and a gapless spin liquid phase. The frustrated Shastry-Sutherland model is close to the critical point but slightly inside the spin liquid phase, while previously studied unfrustrated models cross the first-order line. We also argue that recent heat capacity measurements in SrCu$_2$(BO$_3$)$_2$ show evidence of the proposed spin liquid at pressures between 2.6 and 3 GPa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا