ترغب بنشر مسار تعليمي؟ اضغط هنا

A Wide-field Photometric Survey of Globular Clusters in the Peculiar Early-type Galaxy M85

82   0   0.0 ( 0 )
 نشر من قبل Youkyung Ko
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We survey globular clusters (GCs) in M85 using $ugi$-band images of a $1^{circ} times 1^{circ}$ field obtained with the MegaCam at the 3.6 m Canada-France-Hawaii Telescope. We identify 1318 GC candidates with 20.0 mag $< g_0 <$ 23.5 mag in the entire survey region. Their radial number density profile is well fit by a S{e}rsic profile with $n$ = 2.58$^{+0.43}_{-0.33}$ and effective radius $R_{rm e,GCS}$ = 4$rlap{.}{}$14 (= 22 kpc), showing that the candidates at $R < 20$ are mostly genuine GCs in M85. We estimate the total number of GCs, $N$(total) = $1216^{+82}_{-50}$, and the specific frequency, $S_N = 1.41^{+0.10}_{-0.06}$. The overall color distribution of the GCs in M85 is bimodal, but the GCs in the central region at $R < 2$ do not show a bimodal distribution clearly. The radial number density profile and surface number density map of the blue GCs (BGCs) show more extended structures than those of the red GCs (RGCs). The spatial distributions of both BGCs and RGCs are elongated, similar to that of the galaxy stellar light. The number fraction of the RGCs in the central region is much smaller compared to those in other early-type galaxies of similar luminosity. The mean $(g-i)_0$ color of the RGCs in M85 is about 0.1 mag bluer than typical values for other Virgo early-type galaxies of similar luminosity, indicating that a significant fraction of the RGCs in M85 may be younger than typical GCs. These results indicate that M85 might have undergone a major wet merger recently.



قيم البحث

اقرأ أيضاً

We present a study on stellar population and kinematics of globular clusters (GCs) in the peculiar galaxy M85. We obtain optical spectra of 89 GCs at 8 kpc $< R <$ 160 kpc using the MMT/Hectospec. We divide them into three groups, blue/green/red GCs (B/G/RGCs), with their $(g-i)_0$ colors. All GC subpopulations have mean ages of 10 Gyr, but showing differences in metallicities. The BGCs and RGCs are the most metal-poor ([Z/H] $sim -1.49$) and metal-rich ([Z/H] $sim -0.45$), respectively, and the GGCs are in between. We find that the inner GC system exhibits a strong overall rotation that is entirely due to a disk-like rotation of the RGC system. The BGC system shows little rotation. The GGCs show kinematic properties clearly distinct among the GC subpopulations, having higher mean velocities than the BGCs and RGCs and being aligned along the major axis of M85. This implies that the GGCs have an origin different from the other GC subpopulations. The rotation-corrected velocity dispersion of the RGC system is much lower than that of the BGC system, indicating the truncation of the red halo of M85. The BGCs have a flat velocity dispersion profile out to $R$ = 67 kpc, reflecting the dark matter extent of M85. Using the velocity dispersion of the BGC system, we estimate the dynamical mass of M85 to be $3.8 times 10^{12} M_{odot}$. We infer that M85 has undergone merging events lately, resulting in the peculiar kinematics of the GC system.
Wide-field deep gri images obtained with the Megacam of the Canada-France-Hawaii Telescope (CFHT) are used to investigate the spatial configuration of stars around five metal-poor globular cluster M15, M30, M53, NGC 5053, and NGC 5466, in a field-of- view ~3 degree. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted clusters member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5~0.7r_t, extending the overdensity features out to 1.5~2r_t. Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo.
91 - Juan P. Madrid 2018
The large-scale distribution of globular clusters in the central region of the Coma cluster of galaxies is derived through the analysis of Hubble Space Telescope/Advanced Camera for Surveys data. Data from three different HST observing programs are c ombined in order to obtain a full surface density map of globular clusters in the core of Coma. A total of 22,426 Globular cluster candidates were selected through a detailed morphological inspection and the analysis of their magnitude and colors in two wavebands, F475W (Sloan g) and F814W (I). The spatial distribution of globular clusters defines three main overdensities in Coma that can be associated with NGC 4889, NGC 4874, and IC 4051 but have spatial scales five to six times larger than individual galaxies. The highest surface density of globular clusters in Coma is spatially coincidental with NGC 4889. The most extended overdensity of globular clusters is associated with NGC 4874. Intracluster globular clusters also form clear bridges between Coma galaxies. Red globular clusters, which agglomerate around the center of the three main subgroups, reach higher surface densities than blue ones.
A strong correlation exists between the total mass of a globular cluster (GC) system and the virial halo mass of the host galaxy. However, the total halo mass in this correlation is a statistical measure conducted on spatial scales that are some ten times that of a typical GC system. Here we investigate the connection between GC systems and galaxys dark matter on comparable spatial scales, using dynamical masses measured on a galaxy-by-galaxy basis. Our sample consists of 17 well-studied massive (stellar mass $sim$10$^{11}$ M$_{odot}$) early-type galaxies from the SLUGGS survey. We find the strongest correlation to be that of the blue (metal-poor) GC subpopulation and the dark matter content. This correlation implies that the dark matter mass of a galaxy can be estimated to within a factor of two from careful imaging of its GC system. The ratio of the GC system mass to that of the enclosed dark matter is nearly constant. We also find a strong correlation between the fraction of blue GCs and the fraction of enclosed dark matter, so that a typical galaxy with a blue GC fraction of 60 per cent has a dark matter fraction of 86 per cent over similar spatial scales. Both halo growth and removal (via tidal stripping) may play some role in shaping this trend. In the context of the two-phase model for galaxy formation, we find galaxies with the highest fractions of accreted stars to have higher dark matter fractions for a given fraction of blue GCs.
135 - Sang Chul Kim 2007
We present the result of a wide-field survey of globular clusters (GCs) in M31 covering a 3deg x 3deg field c. We have searched for GCs on CCD images taken with Washington CMT1 filters at the KPNO 0.9 m telescope using steps: (1) inspection of morpho logical parameters given by the SExtractor package such as stellarity, full maximum, and ellipticity; (2) consulting the spectral types and radial velocities obtained from spectra takena spectrograph at the WIYN 3.5 m telescope; and (3) visual inspection of the images of each object. We have and GC candidates, of which 605 are newly found GCs and GC candidates and 559 are previously known GCs. Amoects there are 113 genuine GCs, 258 probable GCs, and 234 possible GCs, according to our classification critee known objects there are 383 genuine GCs, 109 probable GCs, and 67 possible GCs. In total there are 496 genprobable GCs and 301 possible GCs. Most of these newly found GCs have T1 magnitudes of 17.5 - 19.5 mag, [17.9 < V < 19.9 mag assuming (C-T1) ~ 1.5], and (C-T1) colors in the range 1 - 2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا