ترغب بنشر مسار تعليمي؟ اضغط هنا

The SLUGGS Survey: globular clusters and the dark matter content of early-type galaxies

119   0   0.0 ( 0 )
 نشر من قبل Duncan Forbes
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A strong correlation exists between the total mass of a globular cluster (GC) system and the virial halo mass of the host galaxy. However, the total halo mass in this correlation is a statistical measure conducted on spatial scales that are some ten times that of a typical GC system. Here we investigate the connection between GC systems and galaxys dark matter on comparable spatial scales, using dynamical masses measured on a galaxy-by-galaxy basis. Our sample consists of 17 well-studied massive (stellar mass $sim$10$^{11}$ M$_{odot}$) early-type galaxies from the SLUGGS survey. We find the strongest correlation to be that of the blue (metal-poor) GC subpopulation and the dark matter content. This correlation implies that the dark matter mass of a galaxy can be estimated to within a factor of two from careful imaging of its GC system. The ratio of the GC system mass to that of the enclosed dark matter is nearly constant. We also find a strong correlation between the fraction of blue GCs and the fraction of enclosed dark matter, so that a typical galaxy with a blue GC fraction of 60 per cent has a dark matter fraction of 86 per cent over similar spatial scales. Both halo growth and removal (via tidal stripping) may play some role in shaping this trend. In the context of the two-phase model for galaxy formation, we find galaxies with the highest fractions of accreted stars to have higher dark matter fractions for a given fraction of blue GCs.

قيم البحث

اقرأ أيضاً

Early-type (E and S0) galaxies may have assembled via a variety of different evolutionary pathways. Here we investigate these pathways by comparing the stellar kinematic properties of 24 early-type galaxies from the SLUGGS survey with the hydrodynami cal simulations of Naab et al. (2014). In particular, we use the kinematics of starlight up to 4 effective radii (R$_e$) as diagnostics of galaxy inner and outer regions, and assign each galaxy to one of six Naab et al. assembly classes. The majority of our galaxies (14/24) have kinematic characteristics that indicate an assembly history dominated by gradual gas dissipation and accretion of many gas-rich minor mergers. Three galaxies, all S0s, indicate that they have experienced gas-rich major mergers in their more recent past. One additional elliptical galaxy is tentatively associated with a gas-rich merger which results in a remnant galaxy with low angular momentum. Pathways dominated by gas-poor (major or minor) mergers dominate the mass growth of six galaxies. Most SLUGGS galaxies appear to have grown in mass (and size) via the accretion of stars and gas from minor mergers, with late major mergers playing a much smaller role. We find that the fraction of accreted stars correlates with the stellar mean age and metallicity gradient, but not with the slope of the total mass density profile. We briefly mention future observational and modelling approaches that will enhance our ability to accurately reconstruct the assembly histories of individual present day galaxies.
We investigate the kinematic properties of nine nearby early-type galaxies with evidence of a disk-like component. Three of these galaxies are located in the field, five in the group and only one in the cluster environment. By combining the kinematic s of the stars with those of the globular clusters (GCs) and planetary nebulae (PNe), we probe the outer regions of our galaxies out to $sim$4-6 Re. Six galaxies have PNe and red GCs that show good kinematic alignment with the stars, whose rotation occurs along the photometric major-axis of the galaxies, suggesting that both the PNe and red GCs are good tracers of the underlying stellar population beyond that traced by the stars. Additionally, the blue GCs also show rotation that is overall consistent with that of the red GCs in these six galaxies. The remaining three galaxies show kinematic twists and misalignment of the PNe and GCs with respect to the underlying stars, suggesting recent galaxy interactions. From the comparison with simulations, we propose that all six aligned galaxies that show similar dispersion-dominated kinematics at large radii (>2-3 Re) had similar late ($z<1$) assembly histories characterised by mini mergers (mass-ratio <1:10). The different Vrot/$sigma$ profiles are then the result of an early ($z>1$) minor merger (1:10< mass-ratio <1:4) for the four galaxies with peaked and decreasing Vrot/$sigma$ profiles and of a late minor merger for the two galaxies with flat Vrot/$sigma$ profiles. The three mis-aligned galaxies likely formed through multiple late minor mergers that enhanced their velocity dispersion at all radii, or a late major merger that spun-up both the GC sub-populations at large radii. Therefore, lenticular galaxies can have complex merger histories that shape their characteristic kinematic profile shapes.
Here we present positions and radial velocities for over 4000 globular clusters (GCs) in 27 nearby early-type galaxies from the SLUGGS survey. The SLUGGS survey is designed to be representative of elliptical and lenticular galaxies in the stellar mas s range 10 $<$ log M$_{ast}$/M$_{odot}$ $<$ 11.7. The data have been obtained over many years, mostly using the very stable multi-object spectrograph DEIMOS on the Keck II 10m telescope. Radial velocities are measured using the calcium triplet lines with a velocity accuracy of $pm$ 10-15 km/s. We use phase space diagrams (i.e. velocity--position diagrams) to identify contaminants such as foreground stars and background galaxies, and to show that the contribution of GCs from neighboring galaxies is generally insignificant. Likely ultra-compact dwarfs are tabulated separately. We find that the mean velocity of the GC system is close to that of the host galaxy systemic velocity, indicating that the GC system is in overall dynamical equilibrium within the galaxy potential. We also find that the GC system velocity dispersion scales with host galaxy stellar mass in a similar manner to the Faber-Jackson relation for the stellar velocity dispersion. Publication of these GC radial velocity catalogs should enable further studies in many areas, such as GC system substructure, kinematics, and host galaxy mass measurements.
We study the mass and anisotropy distribution of the giant elliptical galaxy NGC 5846 using stars, as well as the red and blue globular cluster (GC) subpopulations. We break degeneracies in the dynamical models by taking advantage of the different ph ase space distributions of the two GC subpopulations to unambiguously constrain the mass of the galaxy and the anisotropy of the GC system. Red GCs show the same spatial distribution and behaviour as the starlight, whereas blue GCs have a shallower density profile, a larger velocity dispersion and a lower kurtosis, all of which suggest a different orbital distribution. We use a dispersion-kurtosis Jeans analysis and find that the solutions of separate analyses for the two GC subpopulations overlap in the halo parameter space. The solution converges on a massive dark matter halo, consistent with expectations from $Lambda$CDM and WMAP7 cosmology in terms of virial mass ($log M_{DM} sim13.3 M_{sun}$) and concentration ($c_{vir}sim8$). This is the first such analysis that solves the dynamics of the different GC subpopulations in a self-consistent manner. Our method improves the uncertainties on the halo parameter determination by a factor of two and opens new avenues for the use of elliptical galaxy dynamics as tests of predictions from cosmological simulations. The implied stellar mass-to-light ratio derived from the dynamical modelling is fully consistent with a Salpeter initial mass function (IMF) and rules out a bottom light IMF. The different GC subpopulations show markedly distinct orbital distributions at large radii, with red GCs having an anisotropy parameter $betasim0.4$ outside $sim3R_e$, and the blue GCs having $betasim0.15$ at the same radii, while centrally ($sim1R_e$) they are both isotropic. We discuss the implications of our findings within the two-phase formation scenario for early-type galaxies.
We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ~2-4 R_e (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in int rinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (sigma_inst ~ 25 km/s) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, sigma, h_3, and h_4) for each galaxy. Combining with literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R_e often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS^3D survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا