ﻻ يوجد ملخص باللغة العربية
We consider one parameter families of vector fields introduced by Rovella, obtained through modifying the eigenvalues of the geometric Lorenz attractor, replacing the expanding condition on the eigenvalues of the singularity by a contracting one. We show that there is no statistical stability within the set of parameters for which there is a physical measure supported on the attractor. This is achieved obtaining a similar conclusion at the level of the corresponding one-dimensional contracting Lorenz maps.
In this paper, we first show that any nonlinear monotonic increasing contracting maps with one discontinuous point on a unit interval which has an unique periodic point with period $n$ conjugates to a piecewise linear contracting map which has period
For every $rinmathbb{N}_{geq 2}cup{infty}$, we show that the space of ergodic measures is path connected for $C^r$-generic Lorenz attractors while it is not connected for $C^r$-dense Lorenz attractors. Various properties of the ergodic measure space
The Lorenz attractor was introduced in 1963 by E. N. Lorenz as one of the first examples of emph{strange attractors}. However Lorenz research was mainly based on (non-rigourous) numerical simulations and, until recently, the proof of the existence of
The problem of effectively combining data with a mathematical model constitutes a major challenge in applied mathematics. It is particular challenging for high-dimensional dynamical systems where data is received sequentially in time and the objectiv
Two different types of perturbations of the Lorenz 63 dynamical system for Rayleigh-Benard convection by multiplicative noise -- called stochastic advection by Lie transport (SALT) noise and fluctuation-dissipation (FD) noise -- are found to produce