ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Method to Measure Star Formation Rates in Active Galaxies Using Mid-infrared Neon Emission Lines

151   0   0.0 ( 0 )
 نشر من قبل Mingyang Zhuang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The star formation rate (SFR) is one of the most fundamental parameters of galaxies, but nearly all of the standard SFR diagnostics are difficult to measure in active galaxies because of contamination from the active galactic nucleus (AGN). Being less sensitive to dust extinction, the mid-infrared fine-structure lines of [NeII] 12.81 micron and [NeIII] 15.56 micron effectively trace the SFR in star-forming galaxies. These lines also have the potential to serve as a reliable SFR indicator in active galaxies, provided that their contribution from the AGN narrow-line region can be removed. We use a new set of photoionization calculations with realistic AGN spectral energy distributions and input assumptions to constrain the magnitude of [NeII] and [NeIII] produced by the narrow-line region for a given strength of [NeV] 14.32 micron. We demonstrate that AGNs emit a relatively restricted range of [NeII]/[NeV] and [NeIII]/[NeV] ratios. Hence, once [NeV] is measured, the AGN contribution to the low-ionization Ne lines can be estimated, and the SFR can be determined from the strength of [NeII] and [NeIII]. We find that AGN host galaxies have similar properties as compact extragalactic HII regions, which indicates that the star formation in AGN hosts is spatially concentrated. This suggests a close relationship between black hole accretion and nuclear star formation. We update the calibration of [NeII] and [NeIII] strength as a SFR indicator, explicitly considering the effects of metallicity, finding very good relations between Ne fractional abundances and the [NeIII]/[NeII] ratio for different metallicities, ionization parameters, and starburst ages. Comparison of neon-based SFRs with independent SFRs for active and star-forming galaxies shows excellent consistency with small scatter ($sim0.18$ dex).

قيم البحث

اقرأ أيضاً

A summary is presented for 130 galaxies observed with the Herschel PACS instrument to measure fluxes for the [CII] 158 um emission line. Sources cover a wide range of active galactic nucleus to starburst classifications, as derived from polycyclic ar omatic hydrocarbon (PAH) strength measured with the Spitzer Infrared Spectrograph. Redshifts from [CII] and line to continuum strengths (equivalent width of [CII]) are given for the full sample, which includes 18 new [CII] flux measures. Calibration of L([CII)]) as a star formation rate (SFR) indicator is determined by comparing [CII] luminosities with mid-infrared [NeII] and [NeIII] emission line luminosities; this gives the same result as determining SFR using bolometric luminosities of reradiating dust from starbursts: log SFR = log L([CII)]) - 7.0, for SFR in solar masses per year and L([CII]) in solar luminosities. We conclude that L([CII]) can be used to measure SFR in any source to a precision of ~ 50%, even if total source luminosities are dominated by an AGN component. The line to continuum ratio at 158 um, EW([CII]), is not significantly greater for starbursts (median EW([CII]) = 1.0 um) compared to composites and AGN (median EW([CII]) = 0.7 um), showing that the far infrared continuum at 158 um scales with [CII] regardless of classification. This indicates that the continuum at 158 um also arises primarily from the starburst component within any source, giving log SFR = log vLv(158 um) - 42.8 for SFR in solar masses per year and vLv(158 um) in erg per sec.
We have measured the near-infrared colors and the fluxes of individual pixels in 68 galaxies common to the Spitzer Infrared Nearby Galaxies Survey and the Large Galaxy Atlas Survey. Each galaxy was separated into regions of increasingly red near-infr ared colors. In the absence of dust extinction and other non-stellar emission, stellar populations are shown to have relatively constant NIR colors, independent of age. In regions of high star formation, the average intensity of pixels in red-excess regions (at 1.25, 3.6, 4.5, 5.6, 8.0 and 24 micron) scales linearly with the intrinsic intensity of Halpha emission, and thus with the star-formation rate within the pixel. This suggests that most NIR-excess regions are not red because their light is being depleted by absorption. Instead, they are red because additional infrared light is being contributed by a process linked to star-formation. This is surprising because the shorter wavelength bands in our study (1.25 micron-5.6 micron) do not probe emission from cold (10-20 K) and warm (50-100 K) dust associated with star-formation in molecular clouds. However, emission from hot dust (700-1000 K) and/or Polycyclic Aromatic Hydrocarbon molecules can explain the additional emission seen at the shorter wavelengths in our study. The contribution from hot dust and/or PAH emission at 2-5micron and PAH emission at 5.6 and 8.0 micron scales linearly with warm dust emission at 24 micron and the intrinsic Halpha emission. Since both are tied to the star-formation rate, our analysis shows that the NIR excess continuum emission and PAH emission at ~1-8 micron can be added to spectral energy distribution models in a very straight-forward way, by simply adding an additional component to the models that scales linearly with star-formation rate.
Measuring of the masses of galactic supermassive black holes (SMBHs) is an important task, since they correlate with the host galaxy properties and play an important role in evolution of galaxies. Here we present a new method for measuring of SMBH ma sses using the polarization of the broad lines emitted from active galactic nuclei (AGNs). We performed spectropolarometric observations of 9 AGNs and find that this method gives measured masses which are in a good agreement with reverberation measurements. An advantage of this method is that it can be used to measure the masses of SMBHs in a consistent way at different cosmological epochs.
127 - H. Roussel 2001
The Halpha and mid-infrared mean disk surface brightnesses are compared in a sample of nearby spirals observed by ISOCAM. This shows that, in spiral disks, dust emission at 7 and 15 microns provides a reasonable star formation tracer. The fact that t he 15 to 7 micron flux ratio is nearly constant in various global exciting conditions indicates a common origin, namely the aromatic infrared band carriers, and implies that at these wavelengths, dust emission from the disks of normal galaxies is dominated by photodissociation regions and not by HII regions themselves. We use this newly-found correlation between the mid-infrared and the Halpha line to investigate the nature of the link between the far-infrared (60 and 100 microns) and Halpha. Although the separation of the central regions from the disk is impossible to achieve in the far-infrared, we show that a circumnuclear contribution to the dust emission, having no equivalent counterpart in Halpha, is most likely responsible for the well-known non-linearity between far-infrared and Halpha fluxes in spiral galaxies. We derive a calibration of 7 and 15 micron fluxes in terms of star formation rates from a primary calibration of Halpha in the literature, and also outline the applicability limits of the proposed conversion, which should not be blindly extrapolated to objects whose nature is unknown.
We present a new observational method to evaluate the star formation law as formulated by Schmidt: the power-law expression assumed to relate the rate of star formation in a volume of space to the local total gas volume density. Volume densities in t he clouds surrounding an OB association are determined with a simple model which considers atomic hydrogen as a photodissociation product on cloud surfaces. The photodissociating flux incident on the cloud is computed from the far-UV luminosity of the OB association and the geometry. We have applied this PDR Method to a sample of star-forming regions in M33 using VLA 21-cm data for the HI and GALEX imagery in the far-UV. It provides an estimate of the total volume density of hydrogen (atomic + molecular) in the gas clouds surrounding the young star cluster. A logarithmic graph of the cluster UV luminosity versus the surrounding gas density is a direct measure of the star formation law. However, this plot is severely affected by observational selection, rendering large areas of the diagram inaccessible to the data. An ordinary least-squares regression fit therefore gives a strongly biased result. Its slope primarily reflects the boundary defined when the 21-cm line becomes optically thick, no longer reliably measuring the HI column density. We use a maximum-likelihood statistical approach which can deal with truncated and skewed data, taking into account the large uncertainties in the derived total gas densities. The exponent we obtain for the Schmidt law in M33 is 1.4 pm 0.2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا