ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization in lines - a new method for measuring black hole masses in active galaxies

158   0   0.0 ( 0 )
 نشر من قبل Luka C. Popovic
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring of the masses of galactic supermassive black holes (SMBHs) is an important task, since they correlate with the host galaxy properties and play an important role in evolution of galaxies. Here we present a new method for measuring of SMBH masses using the polarization of the broad lines emitted from active galactic nuclei (AGNs). We performed spectropolarometric observations of 9 AGNs and find that this method gives measured masses which are in a good agreement with reverberation measurements. An advantage of this method is that it can be used to measure the masses of SMBHs in a consistent way at different cosmological epochs.



قيم البحث

اقرأ أيضاً

The star formation rate (SFR) is one of the most fundamental parameters of galaxies, but nearly all of the standard SFR diagnostics are difficult to measure in active galaxies because of contamination from the active galactic nucleus (AGN). Being les s sensitive to dust extinction, the mid-infrared fine-structure lines of [NeII] 12.81 micron and [NeIII] 15.56 micron effectively trace the SFR in star-forming galaxies. These lines also have the potential to serve as a reliable SFR indicator in active galaxies, provided that their contribution from the AGN narrow-line region can be removed. We use a new set of photoionization calculations with realistic AGN spectral energy distributions and input assumptions to constrain the magnitude of [NeII] and [NeIII] produced by the narrow-line region for a given strength of [NeV] 14.32 micron. We demonstrate that AGNs emit a relatively restricted range of [NeII]/[NeV] and [NeIII]/[NeV] ratios. Hence, once [NeV] is measured, the AGN contribution to the low-ionization Ne lines can be estimated, and the SFR can be determined from the strength of [NeII] and [NeIII]. We find that AGN host galaxies have similar properties as compact extragalactic HII regions, which indicates that the star formation in AGN hosts is spatially concentrated. This suggests a close relationship between black hole accretion and nuclear star formation. We update the calibration of [NeII] and [NeIII] strength as a SFR indicator, explicitly considering the effects of metallicity, finding very good relations between Ne fractional abundances and the [NeIII]/[NeII] ratio for different metallicities, ionization parameters, and starburst ages. Comparison of neon-based SFRs with independent SFRs for active and star-forming galaxies shows excellent consistency with small scatter ($sim0.18$ dex).
60 - {DJ}. Savic 2018
The innermost regions in active galactic nuclei (AGNs) were not being spatially resolved so far but spectropolarimetry can provide us insight about their hidden physics and the geometry. From spectropolarimetric observations in broad emission lines a nd assuming equatorial scattering as a dominant polarization mechanism, it is possible to estimate the mass of supermassive black holes (SMBHs). We explore the possibilities and limits and to put constraints on the usage of the method for determining SMBH masses using polarization in broad emission lines by providing more in-depth theoretical modeling. Methods. We use the Monte Carlo radiative transfer code STOKES for exploring polarization of Type 1 AGNs. We model equatorial scattering using flared-disk geometry for a set of different SMBH masses assuming Thomson scattering. In addition to the Keplerian motion in the BLR, we also consider cases of additional radial inflows and vertical outflows. We model the profiles of polarization plane position angle, degree of polarization and total unpolarized line for different BLR geometries and different SMBH masses. Our modeling confirms that the method can be widely used for Type-1 AGNs when viewing inclinations are between 25 and 45 degrees. We show that the distance between the BLR and scattering region (SR) has a significant impact on the mass estimates and the best mass estimates are when the SR is situated at the distance 1.5-2.5 times larger than the outer BLR radius. Our models show that if Keplerian motion can be traced through the polarized line profile, then the direct estimation of the mass of the SMBH can be performed. When radial inflows or vertical outflows are present in the BLR, this method can be applied if velocities of the inflow/outflow are less than 500 km/s. We find that models for NGC4051, NGC4151, 3C273 and PG0844+349 are in good agreements with observations.
The next generation of giant-segmented mirror telescopes ($>$ 20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understan ding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS, which is capable of diffraction-limited spectroscopy from $Z$ band (0.9 $mu$m) to $K$ band (2.2 $mu$m). These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument, to determine the expected signal-to-noise ratio of a range of possible targets spanning intermediate mass black holes of $sim10^4$ msun to the most massive black holes known today of $>10^{10}$ $M_odot$. We find that IRIS will be able to observe Milky Way-mass black holes out the distance of the Virgo cluster, and will allow us to observe many more brightest cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at the different spectral resolutions and plate scales designed for IRIS. We find that a spectral resolution of $sim8000$ will be necessary to measure the masses of intermediate mass black holes. By simulating the observations of galaxies found in SDSS DR7, we find that over $10^5$ massive black holes will be observable at distances between $0.005 < z < 0.18$ with the estimated sensitivity and angular resolution provided by access to $Z$-band (0.9 $mu$m) spectroscopy from IRIS and the TMT adaptive optics system. (Abridged)
We test the recently proposed (Mediavilla et al. 2018) black hole mass scaling relationship based on the redshift {with respect to the quasars rest frame} of the Fe III$lambdalambda$2039-2113 line blend. To this end, we fit this feature in the spectr a of a well suited sample of quasars, observed with X-shooter at the Very Large Telescope (VLT), whose masses have been independently estimated using the virial theorem. For the quasars of this sample we consistently confirm the redshift of the Fe III$lambdalambda$2039-2113 blend and find that it correlates with the squared widths of H$beta$, H$alpha$ and Mg II, which are commonly used as a measure of $M_{BH}/R$ to determine masses from the virial theorem. The average differences between virial and Fe III$lambdalambda$2039-2113 redshift based masses are 0.18$pm 0.21$ dex, 0.18$pm 0.22$ dex and 0.14$pm 0.21$ dex, when the full widths at half maximum (FWHM) of the H$beta$, H$alpha$ and MgII lines are, respectively, used. The difference is reduced to 0.10$pm 0.16$ dex when the standard deviation, $sigma$, of {the} MgII line is used, instead. We also study the high S/N composite quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS), finding that the Fe III$lambdalambda$2039-2113 redshifts and Mg II squared widths, $FWHM_{MgII}^2$, match very well the correlation found for the individual quasar spectra observed with X-shooter. This correlation is expected if the redshift is gravitational.
199 - Laura Brenneman 2013
Measuring the spins of supermassive black holes (SMBHs) in active galactic nuclei (AGN) can inform us about the relative role of gas accretion vs. mergers in recent epochs of the life of the host galaxy and its AGN. Recent advances in theory and obse rvation have enabled spin measurements for a handful of SMBHs thus far, but this science is still very much in its infancy. Herein, I discuss how and why we seek to measure black hole spin in AGN, using recent results from long X-ray observing campaigns on three radio-quiet AGN (MCG-6-30-15, NGC 3783 and Fairall 9) to illustrate this process and its caveats. I then present our current knowledge of the distribution of SMBH spins in the local universe. I also address prospects for improving the accuracy, precision and quantity of these spin constraints in the next decade and beyond with instruments such as NuSTAR, Astro-H and a future generation large-area X-ray telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا