ﻻ يوجد ملخص باللغة العربية
We consider two-dimensional dependent dynamical site percolation where sites perform majority dynamics. We introduce the critical percolation function at time t as the infimum density with which one needs to begin in order to obtain an infinite open component at time t. We prove that, for any fixed time t, there is no percolation at criticality and that the critical percolation function is continuous. We also prove that, for any positive time, the percolation threshold is strictly smaller than the critical probability for independent site percolation.
We study an interacting particle system in which moving particles activate dormant particles linked by the components of critical bond percolation. Addressing a conjecture from Beckman, Dinan, Durrett, Huo, and Junge for a continuous variant, we prov
We consider the median dynamics process in general graphs. In this model, each vertex has an independent initial opinion uniformly distributed in the interval [0,1] and, with rate one, updates its opinion to coincide with the median of its neighbors.
The existence (or not) of infinite clusters is explored for two stochastic models of intersecting line segments in $d ge 2$ dimensions. Salient features of the phase diagram are established in each case. The models are based on site percolation on ${
We define a continuum percolation model that provides a collection of random ellipses on the plane and study the behavior of the covered set and the vacant set, the one obtained by removing all ellipses. Our model generalizes a construction that appe
We study bond percolation on the square lattice with one-dimensional inhomogeneities. Inhomogeneities are introduced in the following way: A vertical column on the square lattice is the set of vertical edges that project to the same vertex on $mathbb