ﻻ يوجد ملخص باللغة العربية
We construct supersymmetric black holes with rotation or NUT charge for the $overline{mathbb{C}text{P}}^n$- and the $text{t}^3$ model of $N=2$, $D=4$ $text{U}(1)$ FI-gauged supergravity. The solutions preserve 2 real supercharges, which are doubled for their near-horizon geometry. For the $overline{mathbb{C}text{P}}^n$ model we also present a generalization to the nonextremal case, which turns out to be characterized by a Carter-Plebanski-type metric, and has $n+3$ independent parameters, corresponding to mass, angular momentum as well as $n+1$ magnetic charges. We discuss the thermodynamics of these solutions, obtain a Christodoulou-Ruffini mass formula, and shew that they obey a first law of thermodynamics and that the product of horizon areas depends on the angular momentum and the magnetic charges only. At least some of the BPS black holes that we obtain may become instrumental for future microscopic entropy computations involving a supersymmetric index.
We construct black holes with scalar hair in a wide class of four-dimensional N=2 Fayet-Iliopoulos gauged supergravity theories that are characterized by a prepotential containing one free parameter. Considering the truncated model in which only a si
We generalize the vacuum static black brane solutions of Einsteins equations with negative cosmological constant recently discussed in literature, by introducing rotations and an electromagnetic field. We investigate numerically the thermodynamical p
In this paper, we analyze the static solutions for the $U(1)^{4}$ consistent truncation of the maximally supersymmetric gauged supergravity in four dimensions. Using a new parametrization of the known solutions it is shown that for fixed charges ther
We study fractional Skyrmions in a $mathbb{C}P^2$ baby Skyrme model with a generalization of the easy-plane potential. By numerical methods, we find stable, metastable, and unstable solutions taking the shapes of molecules. Various solutions possess
The $mathbb{C}P^{N-1}$ sigma model at finite temperature is studied using lattice Monte Carlo simulations on $S_{s}^{1} times S_{tau}^{1}$ with radii $L_{s}$ and $L_{tau}$, respectively, where the ratio of the circumferences is taken to be sufficient