ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged and rotating Black AdS Branes in $n+p+2$ dimensions

156   0   0.0 ( 0 )
 نشر من قبل Delsate T\\'erence
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Delsate




اسأل ChatGPT حول البحث

We generalize the vacuum static black brane solutions of Einsteins equations with negative cosmological constant recently discussed in literature, by introducing rotations and an electromagnetic field. We investigate numerically the thermodynamical properties of the charged and of the rotating $AdS$ black brane and we provide evidences for the existence of the charged and rotating case. In particular, we study the influence of the rotation and charge on the tension and mass. We find that the rotation essentially influences the tensions while the charge essentially influences the mass.



قيم البحث

اقرأ أيضاً

It is well known that the Reissner-Norstrom solution of Einstein-Maxwell theory cannot be cylindrically extended to higher dimension, as with the black hole solutions in vacuum. In this paper we show that this result is circumvented in Lovelock gravi ty. We prove that the theory containing only the quadratic Lovelock term, the Gauss-Bonnet term, minimally coupled to a $U(1)$ field, admits homogeneous black string and black brane solutions characterized by the mass, charge and volume of the flat directions. We also show that theories containing a single Lovelock term of order $n$ in the Lagrangian coupled to a $(p-1)$-form field admit simple oxidations only when $n$ equals $p$, giving rise to new, exact, charged black branes in higher curvature gravity. For General Relativity this stands for a Lagrangian containing the Einstein-Hilbert term coupled to a massless scalar field, and no-hair theorems in this case forbid the existence of black branes. In all these cases the field equations acquire an invariance under a global scaling scale transformation of the metric. As explicit examples we construct new magnetically charged black branes for cubic Lovelock theory coupled to a Kalb-Ramond field in dimensions $(3m+2)+q$, with $m$ and $q$ integers, and the latter denoting the number of extended flat directions. We also construct dyonic solutions in quartic Lovelock theory in dimension $(4m+2)+q$.
We study the absorption probability and Hawking radiation of the scalar field in the rotating black holes on codimension-2 branes. We find that finite brane tension modifies the standard results in Hawking radiation if compared with the case when bra ne tension is completely negligible. We observe that the rotation of the black hole brings richer physics. Nonzero angular momentum triggers the super-radiance which becomes stronger when the angular momentum increases. We also find that rotations along different angles influence the result in absorption probability and Hawking radiation. Compared with the black hole rotating orthogonal to the brane, in the background that black hole spins on the brane, its angular momentum brings less super-radiance effect and the brane tension increases the range of frequency to accommodate super-radiance. These information can help us know more about the rotating codimension-2 black holes.
We consider black $p$-brane solutions of the low energy string action, computing scalar perturbations. Using standard methods, we derive the wave equations obeyed by the perturbations and treat them analytically and numerically. We have found that te nsorial perturbations obtained via a gauge-invariant formalism leads to the same results as scalar perturbations. No instability has been found. Asymptotically, these solutions typically reduce to a $AdS_{(p+2)}times S^{(8-p)}$ space, which, in the framework of Maldacenas conjecture, can be regarded as a gravitational dual to a conformal field theory defined in a $(p+1)$-dimensional flat space-time. The results presented open the possibility of a better understanding the AdS/CFT correspondence, as originally formulated in terms of the relation among brane structures and gauge theories.
We construct supersymmetric black holes with rotation or NUT charge for the $overline{mathbb{C}text{P}}^n$- and the $text{t}^3$ model of $N=2$, $D=4$ $text{U}(1)$ FI-gauged supergravity. The solutions preserve 2 real supercharges, which are doubled f or their near-horizon geometry. For the $overline{mathbb{C}text{P}}^n$ model we also present a generalization to the nonextremal case, which turns out to be characterized by a Carter-Plebanski-type metric, and has $n+3$ independent parameters, corresponding to mass, angular momentum as well as $n+1$ magnetic charges. We discuss the thermodynamics of these solutions, obtain a Christodoulou-Ruffini mass formula, and shew that they obey a first law of thermodynamics and that the product of horizon areas depends on the angular momentum and the magnetic charges only. At least some of the BPS black holes that we obtain may become instrumental for future microscopic entropy computations involving a supersymmetric index.
We study N =4 super Yang-Mills theories on a three sphere with two kinds of chemical potentials. One is associated with the R-symmetry and the other with the rotational symmetry of S^3 (SO(4) symmetry). These correspond to the charged Kerr-AdS black holes via AdS/CFT. The exact partition functions at zero coupling are computed and the thermodynamical properties are studied. We find a nontrivial gap between the confinement/deconfinement transition line and the boundary of the phase diagram when we include more than four chemical potentials. In the dual gravity, we find such a gap in the phase diagram to study the thermodynamics of the charged Kerr-AdS black hole. This shows that the qualitative phase structures agree between the both sides. We also find that the ratio of the thermodynamical quantities is almost well-known factor 3/4 even at the low temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا