ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete Glauber calculations for proton-nucleus inelastic cross sections

103   0   0.0 ( 0 )
 نشر من قبل Wataru Horiuchi
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a parameter-free calculation for the high-energy proton-nucleus scattering based on the Glauber theory. A complete evaluation of the so-called Glauber amplitude is made by using the factorization of the single-particle wave functions. The multiple-scattering or multistep processes are fully taken into account within the Glauber theory. We demonstrate that proton- $^{12}$C, $^{20}$Ne, and $^{28}$Si elastic and inelastic scattering ($J^pi=0^+ to 2^+$ and $0^+ to 4^+$) processes are very well described in a wide range of the incident energies from $sim$50 MeV to $sim$ 1 GeV. We evaluate the validity of a simple one-step approximation andfind that the approximation works fairly well for the inelastic $0^+ to 2^+$ processes but not for $0^+ to 4^+$ where the multistep processes become more important. As an application, we quantify the difference between the total reaction and interaction cross sections of proton-$^{12}$C, $^{20}$Ne, and $^{28}$Si collisions.

قيم البحث

اقرأ أيضاً

60 - K. Amos , P. K. Deb 2002
A simple functional form has been found that gives a good representation of the total reaction cross sections for the scattering of protons from (15) nuclei spanning the mass range ${}^{9}$Be to ${}^{238}$U and for proton energies ranging from 20 to 300 MeV.
We present the results of our calculation which has been performed to study the nuclear effects in the quasielastic, inelastic and deep inelastic scattering of neutrinos(antineutrinos) from nuclear targets. These calculations are done in the local de nsity approximation. We take into account the effect of Pauli blocking, Fermi motion, Coulomb effect, renormalization of weak transition strengths in the nuclear medium in the case of the quasielastic reaction. The inelastic reaction leading to production of pions is calculated in a $Delta $- dominance model taking into account the renormalization of $Delta$ properties in the nuclear medium and the final state interaction effects of the outgoing pions with the residual nucleus. We discuss the nuclear effects in the $F_{3}^{A}(x)$ structure function in the deep inelastic neutrino(antineutrino) reaction using a relativistic framework to describe the nucleon spectral function in the nucleus.
We calculate the proton-nucleus total reaction cross sections at different energies of incident protons within the optical limit approximation of the Glauber theory. The isospin effect has been taken into account. The nucleon distribution is obtained in the framework of macroscopic nuclear models in a way depending on the equation of state of uniform nuclear matter near the saturation density. We find that at an energy of order 40 MeV, the reaction cross section calculated for neutron- rich isotopes significantly increases as the parameter L characterizing the density dependence of the symmetry energy increases, while at energies of order 300 and 800 MeV, it is almost independent of L. This is a feature of the optical limit Glauber theory in which an exponential dependence of the reaction cross section on the neutron skin thickness remains when the total proton-neutron cross section is small enough.
The inclusive neutrino/antineutrino-induced charged and neutral current reaction cross-sections in $^{12}C$, $^{16}O$, $^{40}Ar$, $^{56}Fe$ and $^{208}Pb$ in the energy region of supernova neutrinos/antineutrinos are studied. The calculations are per formed in the local density approximation (LDA) taking into account the effects due to Pauli blocking, Fermi motion and the renormalization of weak transition strengths in the nuclear medium. The effect of Coulomb distortion of the lepton produced in the charged current reactions has also been included. The numerical results for the energy dependence of the cross-section $sigma(E)$ as well as the flux averaged cross-section and event rates for the charged lepton production in the case of some supernova neutrino/antineutrino fluxes recently discussed in the literature have been presented. We have also given the flux-averaged angular and energy distributions of the charged leptons corresponding to these fluxes.
66 - Giampaolo Co 2006
The Random Phase Approximation theory is used to calculate the total cross sections of electron neutrinos on $^{12}$C nucleus. The role of the excitation of the discrete spectrum is discussed. A comparison with electron scattering and muon capture da ta is presented. The cross section of electron neutrinos coming from muon decay at rest is calculated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا