ترغب بنشر مسار تعليمي؟ اضغط هنا

Swimming to Stability: Structural and Dynamical Control via Active Doping

71   0   0.0 ( 0 )
 نشر من قبل Ahmad Omar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

External fields can decidedly alter the free energy landscape of soft materials and can be exploited as a powerful tool for the assembly of targeted nanostructures and colloidal materials. Here, we use computer simulations to demonstrate that nonequilibrium internal fields or forces -- forces that are generated by driven components within a system -- in the form of active particles can precisely modulate the dynamical free energy landscape of a model soft material, a colloidal gel. Embedding a small fraction of active particles within a gel can provide a unique pathway for the dynamically frustrated network to circumvent the kinetic barriers associated with reaching a lower free energy state through thermal fluctuations alone. Moreover, by carefully tuning the active particle properties (the propulsive swim force and persistence length) in comparison to those of the gel, the active particles may induce depletion-like forces between the constituent particles of the gel despite there being no geometric size asymmetry between the particles. These resulting forces can rapidly push the system toward disparate regions of phase space. Intriguingly, the state of the material can be altered by tuning macroscopic transport properties such as the solvent viscosity. Our findings highlight the potential wide-ranging structural and kinetic control facilitated by varying the dynamical properties of a remarkably small fraction of driven particles embedded in a host material.

قيم البحث

اقرأ أيضاً

Phase separation in a low-density gas-like phase and a high-density liquid-like one is a common trait of biological and synthetic self-propelling particles systems. The competition between motility and stochastic forces is assumed to fix the boundary between the homogeneous and the phase-separated phase. Here we demonstrate that motility does also promote the homogeneous phase allowing particles to resolve their collisions. This new understanding allows quantitatively predicting the spinodal-line of hard self-propelling Brownian particles, the prototypical model exhibiting a motility induced phase separation. Furthermore, we demonstrate that frictional forces control the physical process by which motility promotes the homogeneous phase. Hence, friction emerges as an experimentally variable parameter to control the motility induced phase diagram.
Colloids that interact via a short-range attraction serve as the primary building blocks for a broad range of self-assembled materials. However, one of the well-known drawbacks to this strategy is that these building blocks rapidly and readily conden se into a metastable colloidal gel. Using computer simulations, we illustrate how the addition of a small fraction of purely repulsive self-propelled colloids, a technique referred to as active doping, can prevent the formation of this metastable gel state and drive the system toward its thermodynamically favored crystalline target structure. The simplicity and robust nature of this strategy offers a systematic and generic pathway to improving the self-assembly of a large number of complex colloidal structures. We discuss in detail the process by which this feat is accomplished and provide quantitative metrics for exploiting it to modulate self-assembly. We provide evidence for the generic nature of this approach by demonstrating that it remains robust under a number of different anisotropic short-ranged pair interactions in both two and three dimensions. In addition, we report on a novel microphase in mixtures of passive and active colloids. For a broad range of self-propelling velocities, it is possible to stabilize a suspension of fairly monodisperse finite-size crystallites. Surprisingly, this microphase is also insensitive to the underlying pair interaction between building blocks. The active stabilization of these moderately-sized monodisperse clusters is quite remarkable and should be of great utility in the design of hierarchical self-assembly strategies. This work further bolsters the notion that active forces can play a pivotal role in directing colloidal self-assembly.
We present a theoretical study of transport properties of a liquid comprised of particles uist1:/home/sokrates/egorov/oldhome/Pap41/Submit > m abs.tex We present a theoretical study of transport properties of a liquid comprised of particles interacti ng via Gaussian Core pair potential. Shear viscosity and self-diffusion coefficient are computed on the basis of the mode-coupling theory, with required structural input obtained from integral equation theory. Both self-diffusion coefficient and viscosity display anomalous density dependence, with diffusivity increasing and viscosity decreasing with density within a particular density range along several isotherms below a certain temperature. Our theoretical results for both transport coefficients are in good agreement with the simulation data.
207 - Zhan Ma , Ran Ni 2021
Using computer simulations and dynamic mean-field theory, we demonstrate that fast enough rotation of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional motility induced phase separ ation (MIPS). Multiple clusters arise from the combination of the conventional MIPS cohesion, and the circulating current caused disintegration. The non-vanishing current in non-equilibrium steady states microscopically originates from the motility ``relieved by automatic rotation, which breaks the detailed balance at the continuum level. This mechanism sheds light on the understanding of dynamic clusters formation observed in a variety of active matter systems, and may help examine the generalization of effective thermodynamic concepts developed in the context of MIPS.
We study a swimming undulating sheet in the isotropic phase of an active nematic liquid crystal. Activity changes the effective shear viscosity, reducing it to zero at a critical value of activity. Expanding in the sheet amplitude, we find that the c orrection to the swimming speed due to activity is inversely proportional to the effective shear viscosity. Our perturbative calculation becomes invalid near the critical value of activity; using numerical methods to probe this regime, we find that activity enhances the swimming speed by an order of magnitude compared to the passive case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا