ﻻ يوجد ملخص باللغة العربية
Recurrent neural networks have proved to be an effective method for statistical language modeling. However, in practice their memory and run-time complexity are usually too large to be implemented in real-time offline mobile applications. In this paper we consider several compression techniques for recurrent neural networks including Long-Short Term Memory models. We make particular attention to the high-dimensional output problem caused by the very large vocabulary size. We focus on effective compression methods in the context of their exploitation on devices: pruning, quantization, and matrix decomposition approaches (low-rank factorization and tensor train decomposition, in particular). For each model we investigate the trade-off between its size, suitability for fast inference and perplexity. We propose a general pipeline for applying the most suitable methods to compress recurrent neural networks for language modeling. It has been shown in the experimental study with the Penn Treebank (PTB) dataset that the most efficient results in terms of speed and compression-perplexity balance are obtained by matrix decomposition techniques.
It is important to design compact language models for efficient deployment. We improve upon recent advances in both the language modeling domain and the model-compression domain to construct parameter and computation efficient language models. We use
Sequential data is being generated at an unprecedented pace in various forms, including text and genomic data. This creates the need for efficient compression mechanisms to enable better storage, transmission and processing of such data. To solve thi
Recurrent Neural Networks (RNNs) have dominated language modeling because of their superior performance over traditional N-gram based models. In many applications, a large Recurrent Neural Network language model (RNNLM) or an ensemble of several RNNL
LSTMs are powerful tools for modeling contextual information, as evidenced by their success at the task of language modeling. However, modeling contexts in very high dimensional space can lead to poor generalizability. We introduce the Pyramidal Recu
In this paper we study different types of Recurrent Neural Networks (RNN) for sequence labeling tasks. We propose two new variants of RNNs integrating improvements for sequence labeling, and we compare them to the more traditional Elman and Jordan RN