ترغب بنشر مسار تعليمي؟ اضغط هنا

Centroid-based deep metric learning for speaker recognition

316   0   0.0 ( 0 )
 نشر من قبل Jixuan Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Speaker embedding models that utilize neural networks to map utterances to a space where distances reflect similarity between speakers have driven recent progress in the speaker recognition task. However, there is still a significant performance gap between recognizing speakers in the training set and unseen speakers. The latter case corresponds to the few-shot learning task, where a trained model is evaluated on unseen classes. Here, we optimize a speaker embedding model with prototypical network loss (PNL), a state-of-the-art approach for the few-shot image classification task. The resulting embedding model outperforms the state-of-the-art triplet loss based models in both speaker verification and identification tasks, for both seen and unseen speakers.



قيم البحث

اقرأ أيضاً

The objective of this paper is open-set speaker recognition of unseen speakers, where ideal embeddings should be able to condense information into a compact utterance-level representation that has small intra-speaker and large inter-speaker distance. A popular belief in speaker recognition is that networks trained with classification objectives outperform metric learning methods. In this paper, we present an extensive evaluation of most popular loss functions for speaker recognition on the VoxCeleb dataset. We demonstrate that the vanilla triplet loss shows competitive performance compared to classification-based losses, and those trained with our proposed metric learning objective outperform state-of-the-art methods.
Learning a good speaker embedding is important for many automatic speaker recognition tasks, including verification, identification and diarization. The embeddings learned by softmax are not discriminative enough for open-set verification tasks. Angu lar based embedding learning target can achieve such discriminativeness by optimizing angular distance and adding margin penalty. We apply several different popular angular margin embedding learning strategies in this work and explicitly compare their performance on Voxceleb speaker recognition dataset. Observing the fact that encouraging inter-class separability is important when applying angular based embedding learning, we propose an exclusive inter-class regularization as a complement for angular based loss. We verify the effectiveness of these methods for learning a discriminative embedding space on ASV task with several experiments. These methods together, we manage to achieve an impressive result with 16.5% improvement on equal error rate (EER) and 18.2% improvement on minimum detection cost function comparing with baseline softmax systems.
In this paper, we propose a novel auxiliary loss function for target-speaker automatic speech recognition (ASR). Our method automatically extracts and transcribes target speakers utterances from a monaural mixture of multiple speakers speech given a short sample of the target speaker. The proposed auxiliary loss function attempts to additionally maximize interference speaker ASR accuracy during training. This will regularize the network to achieve a better representation for speaker separation, thus achieving better accuracy on the target-speaker ASR. We evaluated our proposed method using two-speaker-mixed speech in various signal-to-interference-ratio conditions. We first built a strong target-speaker ASR baseline based on the state-of-the-art lattice-free maximum mutual information. This baseline achieved a word error rate (WER) of 18.06% on the test set while a normal ASR trained with clean data produced a completely corrupted result (WER of 84.71%). Then, our proposed loss further reduced the WER by 6.6% relative to this strong baseline, achieving a WER of 16.87%. In addition to the accuracy improvement, we also showed that the auxiliary output branch for the proposed loss can even be used for a secondary ASR for interference speakers speech.
Conversational emotion recognition (CER) has attracted increasing interests in the natural language processing (NLP) community. Different from the vanilla emotion recognition, effective speaker-sensitive utterance representation is one major challeng e for CER. In this paper, we exploit speaker identification (SI) as an auxiliary task to enhance the utterance representation in conversations. By this method, we can learn better speaker-aware contextual representations from the additional SI corpus. Experiments on two benchmark datasets demonstrate that the proposed architecture is highly effective for CER, obtaining new state-of-the-art results on two datasets.
With the acceleration of the pace of work and life, people have to face more and more pressure, which increases the possibility of suffering from depression. However, many patients may fail to get a timely diagnosis due to the serious imbalance in th e doctor-patient ratio in the world. Promisingly, physiological and psychological studies have indicated some differences in speech and facial expression between patients with depression and healthy individuals. Consequently, to improve current medical care, many scholars have used deep learning to extract a representation of depression cues in audio and video for automatic depression detection. To sort out and summarize these works, this review introduces the databases and describes objective markers for automatic depression estimation (ADE). Furthermore, we review the deep learning methods for automatic depression detection to extract the representation of depression from audio and video. Finally, this paper discusses challenges and promising directions related to automatic diagnosing of depression using deep learning technologies.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا