ﻻ يوجد ملخص باللغة العربية
The type II Dirac semimetal PdTe$_2$ is unique in the family of topological parent materials because it displays a superconducting ground state below 1.7 K. Despite wide speculations on the possibility of an unconventional topological superconducting phase, tunneling and heat capacity measurements revealed that the superconducting phase of PdTe$_2$ follows predictions of the microscopic theory of Bardeen, Cooper and Shriefer (BCS) for conventional superconductors. The superconducting phase in PdTe$_2$ is further interesting because it also displays properties that are characteristics of type-I superconductors and are generally unexpected for binary compounds. Here, from scanning tunneling spectroscopic measurements we show that the surface of PdTe$_2$ displays intrinsic electronic inhomegenities in the normal state which leads to a mixed type I and type II superconducting behaviour along with a spatial distribution of critical fields in the superconducting state. Understanding of the origin of such inhomogeneities may be important for understanding the topological properties of PdTe$_2$ in the normal state.
The superconductor PdTe$_2$ was recently classified as a Type II Dirac semimetal, and advocated to be an improved platform for topological superconductivity. Here we report magnetic and transport measurements conducted to determine the nature of the
The transition metal dichalcogenide PdTe$_2$ was recently shown to be a unique system where a type II Dirac semimetallic phase and a superconducting phase co-exist. This observation has led to wide speculation on the possibility of the emergence of a
Very recently, NiTe2 has been reported to be a type II Dirac semimetal with Dirac nodes near the Fermi surface. Furthermore, it is unveiled that NiTe2 presents the Hall Effect, which is ascribed to orbital magnetoresistance. The physical properties b
The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically nontrivial and host exotic Majorana modes. The layered material TaIrTe4
We report the discovery of superconductivity in the ternary aluminide Nb$_{5}$Sn$_{2}$Al, which crystallizes in the W$_{5}$Si$_{3}$-type structure with one-dimensional Nb chains along the $c$-axis. It is found that the compound has a multiband nature