ﻻ يوجد ملخص باللغة العربية
We introduce GLR-klUCB, a novel algorithm for the piecewise iid non-stationary bandit problem with bounded rewards. This algorithm combines an efficient bandit algorithm, kl-UCB, with an efficient, parameter-free, changepoint detector, the Bernoulli Generalized Likelihood Ratio Test, for which we provide new theoretical guarantees of independent interest. Unlike previous non-stationary bandit algorithms using a change-point detector, GLR-klUCB does not need to be calibrated based on prior knowledge on the arms means. We prove that this algorithm can attain a $O(sqrt{TA Upsilon_Tlog(T)})$ regret in $T$ rounds on some easy instances, where A is the number of arms and $Upsilon_T$ the number of change-points, without prior knowledge of $Upsilon_T$. In contrast with recently proposed algorithms that are agnostic to $Upsilon_T$, we perform a numerical study showing that GLR-klUCB is also very efficient in practice, beyond easy instances.
We present a new CUSUM procedure for sequentially detecting change-point in the self and mutual exciting processes, a.k.a. Hawkes networks using discrete events data. Hawkes networks have become a popular model for statistics and machine learning due
Classic contextual bandit algorithms for linear models, such as LinUCB, assume that the reward distribution for an arm is modeled by a stationary linear regression. When the linear regression model is non-stationary over time, the regret of LinUCB ca
Stochastic sparse linear bandits offer a practical model for high-dimensional online decision-making problems and have a rich information-regret structure. In this work we explore the use of information-directed sampling (IDS), which naturally balanc
Cascading bandit (CB) is a popular model for web search and online advertising, where an agent aims to learn the $K$ most attractive items out of a ground set of size $L$ during the interaction with a user. However, the stationary CB model may be too
Stochastic linear bandits with high-dimensional sparse features are a practical model for a variety of domains, including personalized medicine and online advertising. We derive a novel $Omega(n^{2/3})$ dimension-free minimax regret lower bound for s