ﻻ يوجد ملخص باللغة العربية
We numerically study spherical gravitational collapse in shift symmetric Einstein dilaton Gauss Bonnet (EdGB) gravity. We find evidence that there are open sets of initial data for which the character of the system of equations changes from hyperbolic to elliptic type in a compact region of the spacetime. In these cases evolution of the system, treated as a hyperbolic initial boundary value problem, leads to the equations of motion becoming ill-posed when the elliptic region forms. No singularities or discontinuities are encountered on the corresponding effective Cauchy horizon. Therefore it is conceivable that a well-posed formulation of EdGB gravity (at least within spherical symmetry) may be possible if the equations are appropriately treated as mixed-type.
We analyze the polarization content of gravitational waves in Horndeski theory. Besides the familiar plus and cross polarizations in Einsteins General Relativity, there is one more polarization state which is the mixture of the transverse breathing a
We investigate the propagation of primordial gravitational waves within the context of the Horndeski theories, for this, we present a generalized transfer function quantifying the sub-horizon evolution of gravitational waves modes after they enter th
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (
Using the classical top-hat profile, we study the non-linear growth of spherically symmetric density perturbation and structure formation in $f(T)$ gravities. In particular, three concrete models, which have been tested against the observation of lar
Studying the effects of dark energy and modified gravity on cosmological scales has led to a great number of physical models being developed. The effective field theory (EFT) of cosmic acceleration allows an efficient exploration of this large model