ﻻ يوجد ملخص باللغة العربية
Using integral field spectroscopic data of 24 nearby spiral galaxies obtained with the Multi-Unit Spectroscopic Explorer (MUSE), we derive empirical calibrations to determine the metallicity of the diffuse ionized gas (DIG) and/or of the low-ionisation emission region (LI(N)ER) in passive regions of galaxies. To do so, we identify a large number of HII--DIG/LIER pairs that are close enough to be chemically homogeneous and we measure the metallicity difference of each DIG/LIER region relative to its HII region companion when applying the same strong line calibrations. The O3N2 diagnostic ($=$log [([O III]/H$beta$)/([N II]/H$alpha$)]) shows a minimal offset (0.01--0.04 dex) between DIG/LIER and HII regions and little dispersion of the metallicity differences (0.05 dex), suggesting that the O3N2 metallicity calibration for HII regions can be applied to DIG/LIER regions and that, when used on poorly resolved galaxies, this diagnostic provides reliable results by suffering little from DIG contamination. We also derive second-order corrections which further reduce the scatter (0.03--0.04 dex) in the differential metallicity of HII-DIG/LIER pairs. Similarly, we explore other metallicity diagnostics such as O3S2 ($=$log([O III]/H$beta$+[S II]/H$alpha$)) and N2S2H$alpha$ ($=$ log([N II]/[S II]) + 0.264log([N II]/H$alpha$)) and provide corrections for O3S2 to measure the metallicity of DIG/LIER regions. We propose that the corrected O3N2 and O3S2 diagnostics are used to measure the gas-phase metallicity in quiescent galaxies or in quiescent regions of star-forming galaxies.
Estimates of gas-phase abundances based on strong-line methods have been calibrated for H~{scshape ii} regions. Those methods ignore any contribution from the diffuse ionized gas (DIG), which shows enhanced collisional-to-recombination line ratios in
The diffuse ionized gas (DIG) is an important component of the interstellar medium that can provide insights into the different physical processes affecting the gas in galaxies. We utilise optical IFU observations of 71 gas-stripped and control galax
We have observed the giant elliptical galaxy M87 during the Virgo Environmental Survey Tracing Galaxy Evolution (VESTIGE), a blind narrow-band Halpha+[NII] imaging survey of the Virgo cluster carried out with MegaCam at the Canada French Hawaii Teles
Stellar feedback plays a fundamental role in shaping the evolution of galaxies. Here we explore the use of ionised gas kinematics in young, bipolar H II regions as a probe of early feedback in these star-forming environments. We have undertaken a mul
Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of 365 nearly face-on star-forming galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impacts the measurements of emission line ratios, hence the