ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionised gas kinematics in bipolar H II regions

81   0   0.0 ( 0 )
 نشر من قبل Hannah Dalgleish
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stellar feedback plays a fundamental role in shaping the evolution of galaxies. Here we explore the use of ionised gas kinematics in young, bipolar H II regions as a probe of early feedback in these star-forming environments. We have undertaken a multiwavelength study of a young, bipolar H II region in the Galactic disc, G$316.81-0.06$, which lies at the centre of a massive ($sim10^3$ M$_{odot}$) infrared-dark cloud filament. It is still accreting molecular gas as well as driving a $sim 0.2$ pc ionised gas outflow perpendicular to the filament. Intriguingly, we observe a large velocity gradient ($47.81 pm 3.21$ km s$^{-1}$ pc$^{-1}$) across the ionised gas in a direction perpendicular to the outflow. This kinematic signature of the ionised gas shows a reasonable correspondence with the simulations of young H II regions. Based on a qualitative comparison between our observations and these simulations, we put forward a possible explanation for the velocity gradients observed in G$316.81-0.06$. If the velocity gradient perpendicular to the outflow is caused by rotation of the ionised gas, then we infer that this rotation is a direct result of the initial net angular momentum in the natal molecular cloud. If this explanation is correct, this kinematic signature should be common in other young (bipolar) H II regions. We suggest that further quantitative analysis of the ionised gas kinematics of young H II regions, combined with additional simulations, should improve our understanding of feedback at these early stages.



قيم البحث

اقرأ أيضاً

Stephans Quintet (SQ), the prototypical compact group of galaxies in the local Universe, has been observed with the imaging Fourier transform spectrometer SITELLE, attached to the CFHT, to perform a deep search for intergalactic star-forming emission . We present the extended ionised gaseous structures detected and analyse their kinematical properties. The large field of view (11x11) and the spectral ranges of SITELLE have allowed a thorough study of the entire galaxy system, its interaction history and the main properties of the ionised gas. The observations have revealed complex 3D strands in SQ seen for the first time, as well as the spatially resolved velocity field for a new SQ dwarf galaxy (M82-like) and the detailed spectral map of NGC7320c, confirming its AGN nature. A total of 175 SQ H$alpha$ emission regions have been found, 22 of which present line profiles with at least two kinematical components. We studied 12 zones and 28 sub-zones in the SQ system to define plausible physical spatial connections between its different parts in the light of the kinematical information gathered. In this respect we have found 5 velocity systems in SQ: i) v=[5600-5900] $km,s^{-1}$; ii) v=[5900-6100] $km,s^{-1}$; iii) v=[6100-6600] $km,s^{-1}$; iv) v=[6600-6800] $km,s^{-1}$; and v) v=[6800-7000] $km,s^{-1}$. No gas emission is detected in the old tail, neither near NGC7318A nor in NGC7317, and the connection between NGC7319 north lobe and starburst A cannot be confirmed. Conversely, a clear gaseous bridge has been confirmed both spatially and kinematically between the large-scale shock region and the NGC7319 AGN. Finally, a larger scale, outer rim winding the NGC7318B/A system clockwise north-west to south-east has been highlighted in continuum and in H$alpha$. This structure may be reminiscent of a sequence of a previously proposed scenario for SQ a sequence of individual interactions.
We present a near infrared study of the stellar content of 35 H,{sc{ii}} regions in the Galactic plane. In this work, we have used the near infrared domain $J-$, $H-$ and $K_{s}-$ band color images to visually inspect the sample. Also, color-color an d color-magnitude diagrams were used to indicate ionizing star candidates, as well as, the presence of young stellar objects such as classical TTauri Stars (CTTS) and massive young stellar objects (MYSOs). We have obtained {it Spitzer} IRAC images for each region to help further characterize them. {it Spitzer} and near infrared morphology to place each cluster in an evolutionary phase of development. {it Spitzer} photometry was also used to classify the MYSOs. Comparison of the main sequence in color-magnitude diagrams to each observed cluster was used to infer whether or not the cluster kinematic distance is consistent with brightnesses of the stellar sources. We find qualitative agreement for a dozen of the regions, but about half the regions have near infrared photometry that suggests they may be closer than the kinematic distance. A significant fraction of these already have spectrophotometric parallaxes which support smaller distances. These discrepancies between kinematic and spectrophotometric distances are not due to the spectrophotometric methodologies, since independent non-kinematic measurements are in agreement with the spectrophotometric results. For instance, trigonometric parallaxes of star-forming regions were collected from the literature and show the same effect of smaller distances when compared to the kinematic results. In our sample of H,{sc{ii}} regions, most of the clusters are evident in the near infrared images. Finally, it is possible to distinguish among qualitative evolutionary stages for these objects.
A large number (67) of the compact/ultra-compact H II regions identified in the Coordinated Radio and Infrared Survey for High-Mass Star Formation catalogue were determined to be powered by a Lyman continuum flux in excess of what was expected given their corresponding luminosity. In this study we attempt to reasonably explain the Lyman excess phenomenon in as many of the 67 H II regions as possible through a variety of observational and astrophysical means including new luminosity estimates, new Herschel photometry, new distance determinations, the use of different models for dust and ionized gas covering factors, and the use of different stellar calibrations. This phenomenon has been observed before; however, the objects shown to exhibit this behaviour in the literature have decidedly different physical properties than the regions in our sample, and thus the origin of the excess is not the same. We find that the excess can be reproduced using OB stellar atmosphere models that have been slightly modified in the extreme ultraviolet. Though the exact mechanism producing the excess is still uncertain, we do find that a scaled up magnetospheric accretion model, often used to explain similar emission from T Tauri stars, is unable to match our observations. Our results suggest that the Lyman excess may be associated with younger H II regions, and that it is more commonly found in early B-type stars. Our refined sample of 24 Lyman excess H II regions provides an ideal sample for comparative studies with regular H II regions, and can act as the basis for the further detailed study of individual regions.
This work aims at improving the current understanding of the interaction between H ii regions and turbulent molecular clouds. We propose a new method to determine the age of a large sample of OB associations by investigating the development of their associated H ii regions in the surrounding turbulent medium. Using analytical solutions, one-dimensional (1D), and three-dimensional (3D) simulations, we constrained the expansion of the ionized bubble depending on the turbulent level of the parent molecular cloud. A grid of 1D simulations was then computed in order to build isochrone curves for H ii regions in a pressure-size diagram. This grid of models allowed to date large sample of OB associations and was used on the H ii Region Discovery Survey (HRDS). Analytical solutions and numerical simulations showed that the expansion of H ii regions is slowed down by the turbulence up to the point where the pressure of the ionized gas is in a quasi-equilibrium with the turbulent ram pressure. Based on this result, we built a grid of 1D models of the expansion of H ii regions in a profile based on Larson laws. The 3D turbulence is taken into account by an effective 1D temperature profile. The ages estimated by the isochrones of this grid agree well with literature values of well-known regions such as Rosette, RCW 36, RCW 79, and M16. We thus propose that this method can be used to give ages of young OB associations through the Galaxy such as the HRDS survey and also in nearby extra-galactic sources.
143 - Wei Sun 2012
We performed a Chandra X-ray study of three giant H II regions (GHRs), NGC 5461, NGC 5462, and NGC 5471, in the spiral galaxy M101. The X-ray spectra of the three GHRs all contain a prominent thermal component with a temperature of ~0.2 keV. In NGC 5 461, the spatial distribution of the soft (< 1.5 keV) X-ray emission is generally in agreement with the extent of H1105, the most luminous H II region therein, but extends beyond its southern boundary, which could be attributed to outflows from the star cloud between H1105 and H1098. In NGC 5462, the X-ray emission is displaced from the H II regions and a ridge of blue stars; the H-alpha filaments extending from the ridge of star cloud to the diffuse X-rays suggest that hot gas outflows have occurred. The X-rays from NGC 5471 are concentrated at the B-knot, a hypernova remnant candidate. Assuming a Sedov-Taylor evolution, the derived explosion energy, on the order of 10^52 ergs, is consistent with a hypernova origin. In addition, a bright source in the field of NGC 5462 has been identified as a background AGN, instead of a black hole X-ray binary in M101.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا