ﻻ يوجد ملخص باللغة العربية
In classical machine learning, a set of weak classifiers can be adaptively combined to form a strong classifier for improving the overall performance, a technique called adaptive boosting (or AdaBoost). However, constructing the strong classifier for a large data set is typically resource consuming. Here we propose a quantum extension of AdaBoost, demonstrating a quantum algorithm that can output the optimal strong classifier with a quadratic speedup in the number of queries of the weak classifiers. Our results also include a generalization of the standard AdaBoost to the cases where the output of each classifier may be probabilistic even for the same input. We prove that the update rules and the query complexity of the non-deterministic classifiers are the same as those of deterministic classifiers, which may be of independent interest to the classical machine-learning community. Furthermore, the AdaBoost algorithm can also be applied to data encoded in the form of quantum states; we show how the training set can be simplified by using the tools of t-design. Our approach describes a model of quantum machine learning where quantum speedup is achieved in finding the optimal classifier, which can then be applied for classical machine-learning applications.
Boosting is a general method to convert a weak learner (which generates hypotheses that are just slightly better than random) into a strong learner (which generates hypotheses that are much better than random). Recently, Arunachalam and Maity gave th
Perceptrons, which perform binary classification, are the fundamental building blocks of neural networks. Given a data set of size~$N$ and margin~$gamma$ (how well the given data are separated), the query complexity of the best-known quantum training
Quantum speed limit time (QSLT) can be used to characterize the intrinsic minimal time interval for a quantum system evolving from an initial state to a target state. We investigate the QSLT of the open system in Schwarzschild space-time. We show tha
With quantum computers of significant size now on the horizon, we should understand how to best exploit their initially limited abilities. To this end, we aim to identify a practical problem that is beyond the reach of current classical computers, bu
Machine Learning classification models learn the relation between input as features and output as a class in order to predict the class for the new given input. Quantum Mechanics (QM) has already shown its effectiveness in many fields and researchers