ترغب بنشر مسار تعليمي؟ اضغط هنا

Learnable Embedding Space for Efficient Neural Architecture Compression

81   0   0.0 ( 0 )
 نشر من قبل Xiaofang Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method to incrementally learn an embedding space over the domain of network architectures, to enable the careful selection of architectures for evaluation during compressed architecture search. Given a teacher network, we search for a compressed network architecture by using Bayesian Optimization (BO) with a kernel function defined over our proposed embedding space to select architectures for evaluation. We demonstrate that our search algorithm can significantly outperform various baseline methods, such as random search and reinforcement learning (Ashok et al., 2018). The compressed architectures found by our method are also better than the state-of-the-art manually-designed compact architecture ShuffleNet (Zhang et al., 2018). We also demonstrate that the learned embedding space can be transferred to new settings for architecture search, such as a larger teacher network or a teacher network in a different architecture family, without any training. Code is publicly available here: https://github.com/Friedrich1006/ESNAC .

قيم البحث

اقرأ أيضاً

Modern solutions to the single image super-resolution (SISR) problem using deep neural networks aim not only at better performance accuracy but also at a lighter and computationally efficient model. To that end, recently, neural architecture search ( NAS) approaches have shown some tremendous potential. Following the same underlying, in this paper, we suggest a novel trilevel NAS method that provides a better balance between different efficiency metrics and performance to solve SISR. Unlike available NAS, our search is more complete, and therefore it leads to an efficient, optimized, and compressed architecture. We innovatively introduce a trilevel search space modeling, i.e., hierarchical modeling on network-, cell-, and kernel-level structures. To make the search on trilevel spaces differentiable and efficient, we exploit a new sparsestmax technique that is excellent at generating sparse distributions of individual neural architecture candidates so that they can be better disentangled for the final selection from the enlarged search space. We further introduce the sorting technique to the sparsestmax relaxation for better network-level compression. The proposed NAS optimization additionally facilitates simultaneous search and training in a single phase, reducing search time and train time. Comprehensive evaluations on the benchmark datasets show our methods clear superiority over the state-of-the-art NAS in terms of a good trade-off between model size, performance, and efficiency.
The recent WSNet [1] is a new model compression method through sampling filterweights from a compact set and has demonstrated to be effective for 1D convolutionneural networks (CNNs). However, the weights sampling strategy of WSNet ishandcrafted and fixed which may severely limit the expression ability of the resultedCNNs and weaken its compression ability. In this work, we present a novel auto-sampling method that is applicable to both 1D and 2D CNNs with significantperformance improvement over WSNet. Specifically, our proposed auto-samplingmethod learns the sampling rules end-to-end instead of being independent of thenetwork architecture design. With such differentiable weight sampling rule learning,the sampling stride and channel selection from the compact set are optimized toachieve better trade-off between model compression rate and performance. Wedemonstrate that at the same compression ratio, our method outperforms WSNetby6.5% on 1D convolution. Moreover, on ImageNet, our method outperformsMobileNetV2 full model by1.47%in classification accuracy with25%FLOPsreduction. With the same backbone architecture as baseline models, our methodeven outperforms some neural architecture search (NAS) based methods such asAMC [2] and MNasNet [3].
Convolutional neural networks have gained a remarkable success in computer vision. However, most usable network architectures are hand-crafted and usually require expertise and elaborate design. In this paper, we provide a block-wise network generati on pipeline called BlockQNN which automatically builds high-performance networks using the Q-Learning paradigm with epsilon-greedy exploration strategy. The optimal network block is constructed by the learning agent which is trained to choose component layers sequentially. We stack the block to construct the whole auto-generated network. To accelerate the generation process, we also propose a distributed asynchronous framework and an early stop strategy. The block-wise generation brings unique advantages: (1) it yields state-of-the-art results in comparison to the hand-crafted networks on image classification, particularly, the best network generated by BlockQNN achieves 2.35% top-1 error rate on CIFAR-10. (2) it offers tremendous reduction of the search space in designing networks, spending only 3 days with 32 GPUs. A faster version can yield a comparable result with only 1 GPU in 20 hours. (3) it has strong generalizability in that the network built on CIFAR also performs well on the larger-scale dataset. The best network achieves very competitive accuracy of 82.0% top-1 and 96.0% top-5 on ImageNet.
Neural architecture search (NAS) typically consists of three main steps: training a super-network, training and evaluating sampled deep neural networks (DNNs), and training the discovered DNN. Most of the existing efforts speed up some steps at the c ost of a significant slowdown of other steps or sacrificing the support of non-differentiable search metrics. The unbalanced reduction in the time spent per step limits the total search time reduction, and the inability to support non-differentiable search metrics limits the performance of discovered DNNs. In this paper, we present NetAdaptV2 with three innovations to better balance the time spent for each step while supporting non-differentiable search metrics. First, we propose channel-level bypass connections that merge network depth and layer width into a single search dimension to reduce the time for training and evaluating sampled DNNs. Second, ordered dropout is proposed to train multiple DNNs in a single forward-backward pass to decrease the time for training a super-network. Third, we propose the multi-layer coordinate descent optimizer that considers the interplay of multiple layers in each iteration of optimization to improve the performance of discovered DNNs while supporting non-differentiable search metrics. With these innovations, NetAdaptV2 reduces the total search time by up to $5.8times$ on ImageNet and $2.4times$ on NYU Depth V2, respectively, and discovers DNNs with better accuracy-latency/accuracy-MAC trade-offs than state-of-the-art NAS works. Moreover, the discovered DNN outperforms NAS-discovered MobileNetV3 by 1.8% higher top-1 accuracy with the same latency. The project website is http://netadapt.mit.edu.
66 - Yi Yang , Daoye Zhu , Tengteng Qu 2021
In this paper, we propose an efficient and generalizable framework based on deep convolutional neural network (CNN) for multi-source remote sensing data joint classification. While recent methods are mostly based on multi-stream architectures, we use group convolution to construct equivalent network architectures efficiently within a single-stream network. We further adopt and improve dynamic grouping convolution (DGConv) to make group convolution hyperparameters, and thus the overall network architecture, learnable during network training. The proposed method therefore can theoretically adjust any modern CNN models to any multi-source remote sensing data set, and can potentially avoid sub-optimal solutions caused by manually decided architecture hyperparameters. In the experiments, the proposed method is applied to ResNet and UNet, and the adjusted networks are verified on three very diverse benchmark data sets (i.e., Houston2018 data, Berlin data, and MUUFL data). Experimental results demonstrate the effectiveness of the proposed single-stream CNNs, and in particular ResNet18-DGConv improves the state-of-the-art classification overall accuracy (OA) on HS-SAR Berlin data set from $62.23%$ to $68.21%$. In the experiments we have two interesting findings. First, using DGConv generally reduces test OA variance. Second, multi-stream is harmful to model performance if imposed to the first few layers, but becomes beneficial if applied to deeper layers. Altogether, the findings imply that multi-stream architecture, instead of being a strictly necessary component in deep learning models for multi-source remote sensing data, essentially plays the role of model regularizer. Our code is publicly available at https://github.com/yyyyangyi/Multi-source-RS-DGConv. We hope our work can inspire novel research in the future.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا