ترغب بنشر مسار تعليمي؟ اضغط هنا

Sloshing of Galaxy Cluster Core Plasma in the Presence of Self-Interacting Dark Matter

86   0   0.0 ( 0 )
 نشر من قبل John ZuHone
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John ZuHone




اسأل ChatGPT حول البحث

The sloshing of the cold gas in the cores of relaxed clusters of galaxies is a widespread phenomenon, evidenced by the presence of spiral-shaped cold fronts in X-ray observations of these systems. In simulations, these flows of cold gas readily form by interactions of the cluster core with small subclusters, due to a separation of the cold gas from the dark matter (DM), due to their markedly different collisionalities. In this work, we use numerical simulations to investigate the effects of increasing the DM collisionality on sloshing cold fronts in a cool-core cluster. For clusters in isolation, the formation of a flat DM core via self-interactions results in modest adiabatic expansion and cooling of the core gas. In merger simulations, cold fronts form in the same manner as in previous simulations, but the flattened potential in the core region enables the gas to expand to larger radii in the initial stages. Upon infall, the subclusters DM mass decreases via collisions, reducing its influence on the core. Thus, the sloshing gas moves slower, inhibiting the growth of fluid instabilities relative to simulations where the DM cross section is zero. This also inhibits turbulent mixing and the increase in entropy that would otherwise result. For values of the cross section $sigma/m > 1$, subclusters do not survive as self-gravitating structures for more than two core passages. Additionally, separations between the peaks in the X-ray emissivity and thermal Sunyaev-Zeldovich effect signals during sloshing may place constraints on DM self-interactions.


قيم البحث

اقرأ أيضاً

The abundance, distribution and inner structure of satellites of galaxy clusters can be sensitive probes of the properties of dark matter. We run 30 cosmological zoom-in simulations with self-interacting dark matter (SIDM), with a velocity-dependent cross-section, to study the properties of subhalos within cluster-mass hosts. We find that the abundance of subhalos that survive in the SIDM simulations are suppressed relative to their cold dark matter (CDM) counterparts. Once the population of disrupted subhalos -- which may host orphan galaxies -- are taken into account, satellite galaxy populations in CDM and SIDM models can be reconciled. However, even in this case, the inner structure of subhalos are significantly different in the two dark matter models. We study the feasibility of using the weak lensing signal from the subhalo density profiles to distinguish between the cold and self-interacting dark matter while accounting for the potential contribution of orphan galaxies. We find that the effects of self-interactions on the density profile of subhalos can appear degenerate with subhalo disruption in CDM, when orphans are accounted for. With current error bars from the Subaru Hyper Suprime-Cam Strategic Program, we find that subhalos in the outskirts of clusters (where disruption is less prevalent) can be used to constrain dark matter physics. In the future, the Vera C. Rubin Observatory Legacy Survey of Space and Time will give precise measurements of the weak lensing profile and can be used to constrain $sigma_T/m$ at the $sim 1$ cm$^2$ g$^{-1}$ level at $vsim 2000$ km s$^{-1}$.
We explore the phenomenology of having a second epoch of dark matter annihilation into dark radiation long after the standard thermal freeze-out. Such a hidden reannihilation process could affect visible sectors only gravitationally. As a concrete re alization we consider self-interacting dark matter (SIDM) with a light force mediator coupled to dark radiation. We demonstrate how resonantly Sommerfeld enhanced cross sections emerge to induce the reannihilation epoch. The effect is a temporally local modification of the Hubble expansion rate and we show that the Cosmic Microwave Background (CMB) measurements -- as well as other observations -- have a high sensitivity to observe this phenomenon. Special attention is given to the model region where late kinetic decoupling and strong self-interactions can alleviate several small-scale problems in the cold dark matter paradigm at the same time. Interestingly, we find that reannihilation might here also simultaneously lower the tension between CMB and low-redshift astronomical observations of $H_{0}$ and $sigma_{8}$. Moreover, we identify reannihilation as a clear signature to discriminate between the phenomenologically otherwise almost identical vector and scalar mediator realizations of SIDM.
135 - Ryan E. Johnson 2010
We present an analysis of a 72 ks Chandra observation of the double cluster Abell 1644 (z=0.047). The X-ray temperatures indicate the masses are M500=2.6+/-0.4 x10^{14} h^{-1} M_sun for the northern subcluster and M500=3.1+/-0.4 x10^{14} h^{-1} M_sun for the southern, main cluster. We identify a sharp edge in the radial X-ray surface brightness of the main cluster, which we find to be a cold front, with a jump in temperature of a factor of ~3. This edge possesses a spiral morphology characteristic of core gas sloshing around the cluster potential minimum. We present observational evidence, supported by hydrodynamic simulations, that the northern subcluster is the object which initiated the core gas sloshing in the main cluster at least 700 Myr ago. We discuss reheating of the main clusters core gas via two mechanisms brought about by the sloshing gas: first, the release of gravitational potential energy gained by the cores displacement from the potential minimum, and second, a dredging inwards of the outer, higher entropy cluster gas along finger-shaped streams. We find the available gravitational potential energy is small compared to the energy released by the cooling gas in the core.
We study the evolution of cosmological perturbations in dark-matter models with elastic and velocity-independent self interactions. Such interactions are imprinted in the matter-power spectrum as dark acoustic oscillations, which can be experimentall y explored to determine the strength of the self scatterings. Models with self interactions have similarities to warm dark matter, as they lead to suppression of power on small scales when the dark-matter velocity dispersion is sizable. Nonetheless, both the physical origin and the extent of the suppression differ for self-interacting dark matter from conventional warm dark matter, with a dark sound horizon controlling the reduction of power in the former case, and a free-streaming length in the latter. We thoroughly analyze these differences by performing computations of the linear power spectrum using a newly developed Boltzmann code. We find that while current Lyman-$alpha$ data disfavor conventional warm dark matter with a mass less than 5.3 keV, when self interactions are included at their maximal value consistent with bounds from the Bullet Cluster, the limits are relaxed to 4.4 keV. Finally, we make use of our analysis to set novel bounds on light scalar singlet dark matter.
Self-interacting dark matter offers an interesting alternative to collisionless dark matter because of its ability to preserve the large-scale success of the cold dark matter model, while seemingly solving its challenges on small scales. We present h ere the first study of the expected dark matter detection signal taking into account different self-scattering models. We demonstrate that models with constant and velocity dependent cross sections, which are consistent with observational constraints, lead to distinct signatures in the velocity distribution, because non-thermalised features found in the cold dark matter distribution are thermalised through particle scattering. Depending on the model, self-interaction can lead to a 10% reduction of the recoil rates at high energies, corresponding to a minimum speed that can cause recoil larger than 300 km/s, compared to the cold dark matter case. At lower energies these differences are smaller than 5% for all models. The amplitude of the annual modulation signal can increase by up to 25%, and the day of maximum amplitude can shift by about two weeks with respect to the cold dark matter expectation. Furthermore, the exact day of phase reversal of the modulation signal can also differ by about a week between the different models. In general, models with velocity dependent cross sections peaking at the typical velocities of dwarf galaxies lead only to minor changes in the detection signals, whereas allowed constant cross section models lead to significant changes. We conclude that different self-interacting dark matter scenarios might be distinguished from each other through the details of direct detection signals. Furthermore, detailed constraints on the intrinsic properties of dark matter based on null detections, should take into account the possibility of self-scattering and the resulting effects on the detector signal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا