ﻻ يوجد ملخص باللغة العربية
We study the evolution of cosmological perturbations in dark-matter models with elastic and velocity-independent self interactions. Such interactions are imprinted in the matter-power spectrum as dark acoustic oscillations, which can be experimentally explored to determine the strength of the self scatterings. Models with self interactions have similarities to warm dark matter, as they lead to suppression of power on small scales when the dark-matter velocity dispersion is sizable. Nonetheless, both the physical origin and the extent of the suppression differ for self-interacting dark matter from conventional warm dark matter, with a dark sound horizon controlling the reduction of power in the former case, and a free-streaming length in the latter. We thoroughly analyze these differences by performing computations of the linear power spectrum using a newly developed Boltzmann code. We find that while current Lyman-$alpha$ data disfavor conventional warm dark matter with a mass less than 5.3 keV, when self interactions are included at their maximal value consistent with bounds from the Bullet Cluster, the limits are relaxed to 4.4 keV. Finally, we make use of our analysis to set novel bounds on light scalar singlet dark matter.
We explore the phenomenology of having a second epoch of dark matter annihilation into dark radiation long after the standard thermal freeze-out. Such a hidden reannihilation process could affect visible sectors only gravitationally. As a concrete re
We investigate cosmological implications of an energy density contribution arising by elastic dark matter self-interactions. Its scaling behaviour shows that it can be the dominant energy contribution in the early universe. Constraints from primordia
The increasingly significant tensions within $Lambda$CDM, combined with the lack of detection of dark matter (DM) in laboratory experiments, have boosted interest in non-minimal dark sectors, which are theoretically well-motivated and inspire new sea
We use cosmological simulations to study the effects of self-interacting dark matter (SIDM) on the density profiles and substructure counts of dark matter halos from the scales of spiral galaxies to galaxy clusters, focusing explicitly on models with
We investigate cosmological constraints on an energy density contribution of elastic dark matter self-interactions characterized by the mass of the exchange particle and coupling constant. Because of the expansion behaviour in a Robertson-Walker metr