ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying Temperature-dependent Substrate Loss in GaN-on-Si RF Technology

51   0   0.0 ( 0 )
 نشر من قبل Hareesh Chandrasekar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intrinsic limits to temperature-dependent substrate loss for GaN-on-Si technology, due to the change in resistivity of the substrate with temperature, are evaluated using an experimentally validated device simulation framework. Effect of room temperature substrate resistivity on temperature-dependent CPW line loss at various operating frequency bands are then presented. CPW lines for GaN-on-high resistivity Si are shown to have a pronounced temperature-dependence for temperatures above 150{deg}C and have lower substrate losses for frequencies above the X-band. On the other hand, GaN-on-low resistivity Si is shown to be more temperature-insensitive and have lower substrate losses than even HR-Si for lower operating frequencies. The effect of various CPW geometries on substrate loss is also presented to generalize the discussion. These results are expected to act as a benchmark for temperature dependent substrate loss in GaN-on-Si RF technology.

قيم البحث

اقرأ أيضاً

Perovskites have proven to be a promising candidate for highly-efficient solar cells, light-emitting diodes, and X-ray detectors, overcoming limitations of inorganic semiconductors. However, they are notoriously unstable. The main reason for this ins tability is the migration of mobile ions through the device during operation, as they are mixed ionic-electronic conductors. Here we show how measuring the capacitance in both the frequency and the time domain can be used to study ionic dynamics within perovskite-based devices, quantifying activation energy, diffusion coefficient, sign of charge, concentration, and the length of the ionic double layer in the vicinity of the interfaces. Measuring the transient of the capacitance furthermore allows for distinguishing between ionic and electronic effects.
84 - Ru Xu , Peng Chen , Menghan Liu 2020
In this letter, we demonstrate high-performance lateral AlGaN/GaN Schottky barrier diodes (SBD) on Si substrate with a recessed-anode structure. The optimized rapid etch process provides results in improving etching quality with a 0.26-nm roughness o f the anode recessed surface. By using the high work function metal Pt as the Schottky electrode, a low Von of 0.71 V is obtained with a high uniformity of 0.023 V for 40 devices. Supported by the flat anode recess surface and related field plate design, the SBD device with the anode-cathode spacing of 15 um show the Ron,sp of 1.53 mOhm.cm2 only, the breakdown voltage can reach 1592 V with a high power FOM (Figure-of-Merit) of 1656 MW/cm2. For the SBD device with the anode-cathode spacing of 30 um, the breakdown voltage can be as high as 2521 V and the power FOM is 1244 MW/cm2.
We propose and demonstrate a low-cost integrated photonic chip fabricated in a SOI foundry capable of simultaneously routing and amplifying light in a chip. This device is able to compensate insertion losses in photonic routers. It consists of standa rd Si/SiO2 ring resonators with Er:Al2O3 as the upper cladding layer, employed using only one simple post-processing step. This resulted in a measured on/off gain of 0.9 dB, with a footprint smaller than 0.002 mm2, and expected bit rates as high as 40Gb/s based on the resonance quality-factor. We show that the on/off gain value can be further increased using coupled rings to reach net gain values of 4 dB.
The wide bandgap, high-breakdown electric field, and high carrier mobility makes GaN an ideal material for high-power and high-frequency electronics applications such as wireless communication and radar systems. However, the performance and reliabili ty of GaN-based HEMTs are limited by the high channel temperature induced by Joule-heating in the device channel. High thermal conductivity substrates integrated with GaN can improve the extraction of heat from GaN based HEMTs and lower the device operating temperature. However, heterogeneous integration of GaN with diamond substrates is not trivial and presents technical challenges to maximize the heat dissipation potential brought by the diamond substrate. In this work, two modified room temperature surface activated bonding techniques are used to bond GaN and single crystal diamond with different interlayer thicknesses. TDTR is used to measure the thermal properties from room temperature to 480 K. A relatively large TBC of the GaN-diamond interfaces with a 4nm interlayer was observed and material characterization was performed to link the structure of the interface to the TBC. Device modeling shows that the measured GaN-diamond TBC values obtained from bonding can enable high power GaN devices by taking the full advantage of the high thermal conductivity of single crystal diamond and achieve excellent cooling effect. Furthermore, the room-temperature bonding process in this work do not induce stress problem due to different coefficient of thermal expansion in other high temperature integration processes in previous studies. Our work sheds light on the potential for room-temperature heterogeneous integration of semiconductors with diamond for applications of electronics cooling especially for GaN-on-diamond devices.
Materials with properties that are modulated in time are known to display wave phenomena showing energy increasing with time, with the rate mediated by the modulation. Until now there has been no accounting for material dissipation, which clearly cou nteracts energy growth. This paper provides an exact expression for the amplitude of elastic or acoustic waves propagating in lossy materials with properties that are periodically modulated in time. It is found that these materials can support a special propagation regime in which waves travel at constant amplitude, with temporal modulation compensating for the normal energy dissipation. We derive a general condition under which amplification due to time-dependent properties offsets the material dissipation. This identity relates band-gap properties associated with the temporal modulation and the average of the viscosity coefficient, thereby providing a simple recipe for the design of loss-compensated mechanical metamaterials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا