ﻻ يوجد ملخص باللغة العربية
In this paper we study the problem of finding a small safe set $S$ in a graph $G$, i.e. a non-empty set of vertices such that no connected component of $G[S]$ is adjacent to a larger component in $G - S$. We enhance our understanding of the problem from the viewpoint of parameterized complexity by showing that (1) the problem is W[2]-hard when parameterized by the pathwidth $pw$ and cannot be solved in time $n^{o(pw)}$ unless the ETH is false, (2) it admits no polynomial kernel parameterized by the vertex cover number $vc$ unless $mathrm{PH} = Sigma^{mathrm{p}}_{3}$, but (3) it is fixed-parameter tractable (FPT) when parameterized by the neighborhood diversity $nd$, and (4) it can be solved in time $n^{f(cw)}$ for some double exponential function $f$ where $cw$ is the clique-width. We also present (5) a faster FPT algorithm when parameterized by solution size.
Let $G$ be a graph on $n$ vertices and $mathrm{STAB}_k(G)$ be the convex hull of characteristic vectors of its independent sets of size at most $k$. We study extension complexity of $mathrm{STAB}_k(G)$ with respect to a fixed parameter $k$ (analogous
We study the NP-hard textsc{$k$-Sparsest Cut} problem ($k$SC) in which, given an undirected graph $G = (V, E)$ and a parameter $k$, the objective is to partition vertex set into $k$ subsets whose maximum edge expansion is minimized. Herein, the edge
In $d$-Scattered Set we are given an (edge-weighted) graph and are asked to select at least $k$ vertices, so that the distance between any pair is at least $d$, thus generalizing Independent Set. We provide upper and lower bounds on the complexity of
In this paper, we consider the Target Set Selection problem: given a graph and a threshold value $thr(v)$ for any vertex $v$ of the graph, find a minimum size vertex-subset to activate s.t. all the vertices of the graph are activated at the end of th
A matching is a set of edges in a graph with no common endpoint. A matching $M$ is called acyclic if the induced subgraph on the endpoints of the edges in $M$ is acyclic. Given a graph $G$ and an integer $k$, Acyclic Matching Problem seeks for an acy