ﻻ يوجد ملخص باللغة العربية
In $d$-Scattered Set we are given an (edge-weighted) graph and are asked to select at least $k$ vertices, so that the distance between any pair is at least $d$, thus generalizing Independent Set. We provide upper and lower bounds on the complexity of this problem with respect to various standard graph parameters. In particular, we show the following: - For any $dge2$, an $O^*(d^{textrm{tw}})$-time algorithm, where $textrm{tw}$ is the treewidth of the input graph. - A tight SETH-based lower bound matching this algorithms performance. These generalize known results for Independent Set. - $d$-Scattered Set is W[1]-hard parameterized by vertex cover (for edge-weighted graphs), or feedback vertex set (for unweighted graphs), even if $k$ is an additional parameter. - A single-exponential algorithm parameterized by vertex cover for unweighted graphs, complementing the above-mentioned hardness. - A $2^{O(textrm{td}^2)}$-time algorithm parameterized by tree-depth ($textrm{td}$), as well as a matching ETH-based lower bound, both for unweighted graphs. We complement these mostly negative results by providing an FPT approximation scheme parameterized by treewidth. In particular, we give an algorithm which, for any error parameter $epsilon > 0$, runs in time $O^*((textrm{tw}/epsilon)^{O(textrm{tw})})$ and returns a $d/(1+epsilon)$-scattered set of size $k$, if a $d$-scattered set of the same size exists.
In the $d$-Scattered Set problem we are asked to select at least $k$ vertices of a given graph, so that the distance between any pair is at least $d$. We study the problems (in-)approximability and offer improvements and extensions of known results f
In this paper we study the problem of finding a small safe set $S$ in a graph $G$, i.e. a non-empty set of vertices such that no connected component of $G[S]$ is adjacent to a larger component in $G - S$. We enhance our understanding of the problem f
In this paper, we consider the Target Set Selection problem: given a graph and a threshold value $thr(v)$ for any vertex $v$ of the graph, find a minimum size vertex-subset to activate s.t. all the vertices of the graph are activated at the end of th
Let $G$ be a graph on $n$ vertices and $mathrm{STAB}_k(G)$ be the convex hull of characteristic vectors of its independent sets of size at most $k$. We study extension complexity of $mathrm{STAB}_k(G)$ with respect to a fixed parameter $k$ (analogous
We study the NP-hard textsc{$k$-Sparsest Cut} problem ($k$SC) in which, given an undirected graph $G = (V, E)$ and a parameter $k$, the objective is to partition vertex set into $k$ subsets whose maximum edge expansion is minimized. Herein, the edge